3
0
Fork 0
forked from suyu/suyu

Merge pull request #810 from yuriks/memmap

Kernel: Add VMManager to manage process address spaces
This commit is contained in:
Yuri Kunde Schlesner 2015-05-29 18:00:17 -07:00
commit 8a04c65e20
7 changed files with 491 additions and 38 deletions

View file

@ -36,6 +36,7 @@ set(SRCS
hle/kernel/shared_memory.cpp
hle/kernel/thread.cpp
hle/kernel/timer.cpp
hle/kernel/vm_manager.cpp
hle/service/ac_u.cpp
hle/service/act_u.cpp
hle/service/am_app.cpp
@ -147,6 +148,7 @@ set(HEADERS
hle/kernel/shared_memory.h
hle/kernel/thread.h
hle/kernel/timer.h
hle/kernel/vm_manager.h
hle/result.h
hle/service/ac_u.h
hle/service/act_u.h

View file

@ -0,0 +1,245 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory_setup.h"
namespace Kernel {
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (permissions != next.permissions ||
meminfo_state != next.meminfo_state ||
type != next.type) {
return false;
}
if (type == VMAType::AllocatedMemoryBlock &&
(backing_block != next.backing_block || offset + size != next.offset)) {
return false;
}
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false;
}
if (type == VMAType::MMIO && paddr + size != next.paddr) {
return false;
}
return true;
}
VMManager::VMManager() {
Reset();
}
void VMManager::Reset() {
vma_map.clear();
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = MAX_ADDRESS;
vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma);
}
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
return std::prev(vma_map.upper_bound(target));
}
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block, u32 offset, u32 size, MemoryState state) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_block = block;
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8 * memory, u32 size, MemoryState state) {
ASSERT(memory != nullptr);
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::BackingMemory;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_memory = memory;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state) {
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::MMIO;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.paddr = paddr;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
void VMManager::Unmap(VMAHandle vma_handle) {
VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second;
vma.type = VMAType::Free;
vma.permissions = VMAPermission::None;
vma.meminfo_state = MemoryState::Free;
vma.backing_block = nullptr;
vma.offset = 0;
vma.backing_memory = nullptr;
vma.paddr = 0;
UpdatePageTableForVMA(vma);
MergeAdjacent(iter);
}
void VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second;
vma.permissions = new_perms;
UpdatePageTableForVMA(vma);
MergeAdjacent(iter);
}
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle & iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: %8X", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: %08X", base);
VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E01BF5
}
VirtualMemoryArea& vma = vma_handle->second;
if (vma.type != VMAType::Free) {
// Region is already allocated
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
}
u32 start_in_vma = base - vma.base;
u32 end_in_vma = start_in_vma + size;
if (end_in_vma > vma.size) {
// Requested allocation doesn't fit inside VMA
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS,
ErrorSummary::InvalidState, ErrorLevel::Usage); // 0xE0A01BF5
}
if (end_in_vma != vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return MakeResult<VMAIter>(vma_handle);
}
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VMAType::Free:
break;
case VMAType::AllocatedMemoryBlock:
new_vma.offset += offset_in_vma;
break;
case VMAType::BackingMemory:
new_vma.backing_memory += offset_in_vma;
break;
case VMAType::MMIO:
new_vma.paddr += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VMAType::Free:
Memory::UnmapRegion(vma.base, vma.size);
break;
case VMAType::AllocatedMemoryBlock:
Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_block->data() + vma.offset);
break;
case VMAType::BackingMemory:
Memory::MapMemoryRegion(vma.base, vma.size, vma.backing_memory);
break;
case VMAType::MMIO:
// TODO(yuriks): Add support for MMIO handlers.
Memory::MapIoRegion(vma.base, vma.size);
break;
}
}
}

View file

@ -0,0 +1,200 @@
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "common/common_types.h"
#include "core/hle/result.h"
namespace Kernel {
enum class VMAType : u8 {
/// VMA represents an unmapped region of the address space.
Free,
/// VMA is backed by a ref-counted allocate memory block.
AllocatedMemoryBlock,
/// VMA is backed by a raw, unmanaged pointer.
BackingMemory,
/// VMA is mapped to MMIO registers at a fixed PAddr.
MMIO,
// TODO(yuriks): Implement MemoryAlias to support MAP/UNMAP
};
/// Permissions for mapped memory blocks
enum class VMAPermission : u8 {
None = 0,
Read = 1,
Write = 2,
Execute = 4,
ReadWrite = Read | Write,
ReadExecute = Read | Execute,
WriteExecute = Write | Execute,
ReadWriteExecute = Read | Write | Execute,
};
/// Set of values returned in MemoryInfo.state by svcQueryMemory.
enum class MemoryState : u8 {
Free = 0,
Reserved = 1,
IO = 2,
Static = 3,
Code = 4,
Private = 5,
Shared = 6,
Continuous = 7,
Aliased = 8,
Alias = 9,
AliasCode = 10,
Locked = 11,
};
/**
* Represents a VMA in an address space. A VMA is a contiguous region of virtual addressing space
* with homogeneous attributes across its extents. In this particular implementation each VMA is
* also backed by a single host memory allocation.
*/
struct VirtualMemoryArea {
/// Virtual base address of the region.
VAddr base = 0;
/// Size of the region.
u32 size = 0;
VMAType type = VMAType::Free;
VMAPermission permissions = VMAPermission::None;
/// Tag returned by svcQueryMemory. Not otherwise used.
MemoryState meminfo_state = MemoryState::Free;
// Settings for type = AllocatedMemoryBlock
/// Memory block backing this VMA.
std::shared_ptr<std::vector<u8>> backing_block = nullptr;
/// Offset into the backing_memory the mapping starts from.
u32 offset = 0;
// Settings for type = BackingMemory
/// Pointer backing this VMA. It will not be destroyed or freed when the VMA is removed.
u8* backing_memory = nullptr;
// Settings for type = MMIO
/// Physical address of the register area this VMA maps to.
PAddr paddr = 0;
/// Tests if this area can be merged to the right with `next`.
bool CanBeMergedWith(const VirtualMemoryArea& next) const;
};
/**
* Manages a process' virtual addressing space. This class maintains a list of allocated and free
* regions in the address space, along with their attributes, and allows kernel clients to
* manipulate it, adjusting the page table to match.
*
* This is similar in idea and purpose to the VM manager present in operating system kernels, with
* the main difference being that it doesn't have to support swapping or memory mapping of files.
* The implementation is also simplified by not having to allocate page frames. See these articles
* about the Linux kernel for an explantion of the concept and implementation:
* - http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/
* - http://duartes.org/gustavo/blog/post/page-cache-the-affair-between-memory-and-files/
*/
class VMManager {
// TODO(yuriks): Make page tables switchable to support multiple VMManagers
public:
/**
* The maximum amount of address space managed by the kernel. Addresses above this are never used.
* @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000.
*/
static const u32 MAX_ADDRESS = 0x40000000;
/**
* A map covering the entirety of the managed address space, keyed by the `base` field of each
* VMA. It must always be modified by splitting or merging VMAs, so that the invariant
* `elem.base + elem.size == next.base` is preserved, and mergeable regions must always be
* merged when possible so that no two similar and adjacent regions exist that have not been
* merged.
*/
std::map<VAddr, VirtualMemoryArea> vma_map;
using VMAHandle = decltype(vma_map)::const_iterator;
VMManager();
/// Clears the address space map, re-initializing with a single free area.
void Reset();
/// Finds the VMA in which the given address is included in, or `vma_map.end()`.
VMAHandle FindVMA(VAddr target) const;
// TODO(yuriks): Should these functions actually return the handle?
/**
* Maps part of a ref-counted block of memory at a given address.
*
* @param target The guest address to start the mapping at.
* @param block The block to be mapped.
* @param offset Offset into `block` to map from.
* @param size Size of the mapping.
* @param state MemoryState tag to attach to the VMA.
*/
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
u32 offset, u32 size, MemoryState state);
/**
* Maps an unmanaged host memory pointer at a given address.
*
* @param target The guest address to start the mapping at.
* @param memory The memory to be mapped.
* @param size Size of the mapping.
* @param state MemoryState tag to attach to the VMA.
*/
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state);
/**
* Maps a memory-mapped IO region at a given address.
*
* @param target The guest address to start the mapping at.
* @param paddr The physical address where the registers are present.
* @param size Size of the mapping.
* @param state MemoryState tag to attach to the VMA.
*/
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state);
/// Unmaps the given VMA.
void Unmap(VMAHandle vma);
/// Changes the permissions of the given VMA.
void Reprotect(VMAHandle vma, VMAPermission new_perms);
private:
using VMAIter = decltype(vma_map)::iterator;
/// Converts a VMAHandle to a mutable VMAIter.
VMAIter StripIterConstness(const VMAHandle& iter);
/**
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking.
*/
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size);
/**
* Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side.
*/
VMAIter SplitVMA(VMAIter vma, u32 offset_in_vma);
/**
* Checks for and merges the specified VMA with adjacent ones if possible.
* @returns the merged VMA or the original if no merging was possible.
*/
VMAIter MergeAdjacent(VMAIter vma);
/// Updates the pages corresponding to this VMA so they match the VMA's attributes.
void UpdatePageTableForVMA(const VirtualMemoryArea& vma);
};
}

View file

@ -8,6 +8,10 @@
#include "common/logging/log.h"
#include "core/hle/config_mem.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/hle/result.h"
#include "core/hle/shared_page.h"
#include "core/mem_map.h"
#include "core/memory.h"
@ -17,31 +21,23 @@
namespace Memory {
u8* g_exefs_code; ///< ExeFS:/.code is loaded here
u8* g_heap; ///< Application heap (main memory)
u8* g_shared_mem; ///< Shared memory
u8* g_heap_linear; ///< Linear heap
u8* g_vram; ///< Video memory (VRAM) pointer
u8* g_dsp_mem; ///< DSP memory
u8* g_tls_mem; ///< TLS memory
namespace {
struct MemoryArea {
u8** ptr;
u32 base;
u32 size;
const char* name;
};
// We don't declare the IO regions in here since its handled by other means.
static MemoryArea memory_areas[] = {
{&g_exefs_code, PROCESS_IMAGE_VADDR, PROCESS_IMAGE_MAX_SIZE},
{&g_heap, HEAP_VADDR, HEAP_SIZE },
{&g_shared_mem, SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE },
{&g_heap_linear, LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE },
{&g_vram, VRAM_VADDR, VRAM_SIZE },
{&g_dsp_mem, DSP_RAM_VADDR, DSP_RAM_SIZE },
{&g_tls_mem, TLS_AREA_VADDR, TLS_AREA_SIZE },
{PROCESS_IMAGE_VADDR, PROCESS_IMAGE_MAX_SIZE, "Process Image"}, // ExeFS:/.code is loaded here
{HEAP_VADDR, HEAP_SIZE, "Heap"}, // Application heap (main memory)
{SHARED_MEMORY_VADDR, SHARED_MEMORY_SIZE, "Shared Memory"}, // Shared memory
{LINEAR_HEAP_VADDR, LINEAR_HEAP_SIZE, "Linear Heap"}, // Linear heap (main memory)
{VRAM_VADDR, VRAM_SIZE, "VRAM"}, // Video memory (VRAM)
{DSP_RAM_VADDR, DSP_RAM_SIZE, "DSP RAM"}, // DSP memory
{TLS_AREA_VADDR, TLS_AREA_SIZE, "TLS Area"}, // TLS memory
};
/// Represents a block of memory mapped by ControlMemory/MapMemoryBlock
@ -135,27 +131,34 @@ VAddr PhysicalToVirtualAddress(const PAddr addr) {
return addr | 0x80000000;
}
// TODO(yuriks): Move this into Process
static Kernel::VMManager address_space;
void Init() {
using namespace Kernel;
InitMemoryMap();
for (MemoryArea& area : memory_areas) {
*area.ptr = new u8[area.size];
MapMemoryRegion(area.base, area.size, *area.ptr);
auto block = std::make_shared<std::vector<u8>>(area.size);
address_space.MapMemoryBlock(area.base, std::move(block), 0, area.size, MemoryState::Private).Unwrap();
}
MapMemoryRegion(CONFIG_MEMORY_VADDR, CONFIG_MEMORY_SIZE, (u8*)&ConfigMem::config_mem);
MapMemoryRegion(SHARED_PAGE_VADDR, SHARED_PAGE_SIZE, (u8*)&SharedPage::shared_page);
LOG_DEBUG(HW_Memory, "initialized OK, RAM at %p", g_heap);
auto cfg_mem_vma = address_space.MapBackingMemory(CONFIG_MEMORY_VADDR,
(u8*)&ConfigMem::config_mem, CONFIG_MEMORY_SIZE, MemoryState::Shared).MoveFrom();
address_space.Reprotect(cfg_mem_vma, VMAPermission::Read);
auto shared_page_vma = address_space.MapBackingMemory(SHARED_PAGE_VADDR,
(u8*)&SharedPage::shared_page, SHARED_PAGE_SIZE, MemoryState::Shared).MoveFrom();
address_space.Reprotect(shared_page_vma, VMAPermission::Read);
LOG_DEBUG(HW_Memory, "initialized OK");
}
void Shutdown() {
heap_map.clear();
heap_linear_map.clear();
for (MemoryArea& area : memory_areas) {
delete[] *area.ptr;
*area.ptr = nullptr;
}
address_space.Reset();
LOG_DEBUG(HW_Memory, "shutdown OK");
}

View file

@ -8,14 +8,6 @@
namespace Memory {
extern u8* g_exefs_code; ///< ExeFS:/.code is loaded here
extern u8* g_heap; ///< Application heap (main memory)
extern u8* g_shared_mem; ///< Shared memory
extern u8* g_heap_linear; ///< Linear heap (main memory)
extern u8* g_vram; ///< Video memory (VRAM)
extern u8* g_dsp_mem; ///< DSP memory
extern u8* g_tls_mem; ///< TLS memory
void Init();
void Shutdown();

View file

@ -14,12 +14,10 @@
#include "core/hw/hw.h"
#include "core/mem_map.h"
#include "core/memory.h"
#include "core/memory_setup.h"
namespace Memory {
const u32 PAGE_MASK = PAGE_SIZE - 1;
const int PAGE_BITS = 12;
enum class PageType {
/// Page is unmapped and should cause an access error.
Unmapped,
@ -64,7 +62,7 @@ static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
while (base != end) {
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
if (current_page_table->attributes[base] != PageType::Unmapped) {
if (current_page_table->attributes[base] != PageType::Unmapped && type != PageType::Unmapped) {
LOG_ERROR(HW_Memory, "overlapping memory ranges at %08X", base * PAGE_SIZE);
}
current_page_table->attributes[base] = type;
@ -92,6 +90,12 @@ void MapIoRegion(VAddr base, u32 size) {
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
}
void UnmapRegion(VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];

View file

@ -6,8 +6,13 @@
#include "common/common_types.h"
#include "core/memory.h"
namespace Memory {
const u32 PAGE_MASK = PAGE_SIZE - 1;
const int PAGE_BITS = 12;
void InitMemoryMap();
/**
@ -26,4 +31,6 @@ void MapMemoryRegion(VAddr base, u32 size, u8* target);
*/
void MapIoRegion(VAddr base, u32 size);
void UnmapRegion(VAddr base, u32 size);
}