3
0
Fork 0
forked from suyu/suyu

shader: Add partial rasterizer integration

This commit is contained in:
ReinUsesLisp 2021-03-19 19:28:31 -03:00 committed by ameerj
parent 72990df7ba
commit 260743f371
54 changed files with 1929 additions and 568 deletions

View file

@ -65,6 +65,7 @@ add_library(shader_recompiler STATIC
frontend/maxwell/translate/impl/common_funcs.h frontend/maxwell/translate/impl/common_funcs.h
frontend/maxwell/translate/impl/condition_code_set.cpp frontend/maxwell/translate/impl/condition_code_set.cpp
frontend/maxwell/translate/impl/double_add.cpp frontend/maxwell/translate/impl/double_add.cpp
frontend/maxwell/translate/impl/exit_program.cpp
frontend/maxwell/translate/impl/find_leading_one.cpp frontend/maxwell/translate/impl/find_leading_one.cpp
frontend/maxwell/translate/impl/floating_point_add.cpp frontend/maxwell/translate/impl/floating_point_add.cpp
frontend/maxwell/translate/impl/floating_point_compare.cpp frontend/maxwell/translate/impl/floating_point_compare.cpp
@ -121,9 +122,8 @@ add_library(shader_recompiler STATIC
ir_opt/texture_pass.cpp ir_opt/texture_pass.cpp
ir_opt/verification_pass.cpp ir_opt/verification_pass.cpp
object_pool.h object_pool.h
program_header.h
profile.h profile.h
recompiler.cpp
recompiler.h
shader_info.h shader_info.h
) )

View file

@ -62,18 +62,15 @@ void VectorTypes::Define(Sirit::Module& sirit_ctx, Id base_type, std::string_vie
} }
} }
EmitContext::EmitContext(const Profile& profile_, IR::Program& program) EmitContext::EmitContext(const Profile& profile_, IR::Program& program, u32& binding)
: Sirit::Module(0x00010000), profile{profile_} { : Sirit::Module(0x00010000), profile{profile_} {
AddCapability(spv::Capability::Shader); AddCapability(spv::Capability::Shader);
DefineCommonTypes(program.info); DefineCommonTypes(program.info);
DefineCommonConstants(); DefineCommonConstants();
DefineSpecialVariables(program.info); DefineInterfaces(program.info, program.stage);
u32 binding{};
DefineConstantBuffers(program.info, binding); DefineConstantBuffers(program.info, binding);
DefineStorageBuffers(program.info, binding); DefineStorageBuffers(program.info, binding);
DefineTextures(program.info, binding); DefineTextures(program.info, binding);
DefineLabels(program); DefineLabels(program);
} }
@ -96,6 +93,8 @@ Id EmitContext::Def(const IR::Value& value) {
return Constant(F32[1], value.F32()); return Constant(F32[1], value.F32());
case IR::Type::F64: case IR::Type::F64:
return Constant(F64[1], value.F64()); return Constant(F64[1], value.F64());
case IR::Type::Label:
return value.Label()->Definition<Id>();
default: default:
throw NotImplementedException("Immediate type {}", value.Type()); throw NotImplementedException("Immediate type {}", value.Type());
} }
@ -109,6 +108,9 @@ void EmitContext::DefineCommonTypes(const Info& info) {
F32.Define(*this, TypeFloat(32), "f32"); F32.Define(*this, TypeFloat(32), "f32");
U32.Define(*this, TypeInt(32, false), "u32"); U32.Define(*this, TypeInt(32, false), "u32");
input_f32 = Name(TypePointer(spv::StorageClass::Input, F32[1]), "input_f32");
output_f32 = Name(TypePointer(spv::StorageClass::Output, F32[1]), "output_f32");
if (info.uses_int8) { if (info.uses_int8) {
AddCapability(spv::Capability::Int8); AddCapability(spv::Capability::Int8);
U8 = Name(TypeInt(8, false), "u8"); U8 = Name(TypeInt(8, false), "u8");
@ -139,15 +141,20 @@ void EmitContext::DefineCommonConstants() {
u32_zero_value = Constant(U32[1], 0U); u32_zero_value = Constant(U32[1], 0U);
} }
void EmitContext::DefineSpecialVariables(const Info& info) { void EmitContext::DefineInterfaces(const Info& info, Stage stage) {
const auto define{[this](Id type, spv::BuiltIn builtin, spv::StorageClass storage_class) { const auto define{
const Id pointer_type{TypePointer(storage_class, type)}; [this](Id type, std::optional<spv::BuiltIn> builtin, spv::StorageClass storage_class) {
const Id id{AddGlobalVariable(pointer_type, spv::StorageClass::Input)}; const Id pointer_type{TypePointer(storage_class, type)};
Decorate(id, spv::Decoration::BuiltIn, builtin); const Id id{AddGlobalVariable(pointer_type, storage_class)};
return id; if (builtin) {
}}; Decorate(id, spv::Decoration::BuiltIn, *builtin);
}
interfaces.push_back(id);
return id;
}};
using namespace std::placeholders; using namespace std::placeholders;
const auto define_input{std::bind(define, _1, _2, spv::StorageClass::Input)}; const auto define_input{std::bind(define, _1, _2, spv::StorageClass::Input)};
const auto define_output{std::bind(define, _1, _2, spv::StorageClass::Output)};
if (info.uses_workgroup_id) { if (info.uses_workgroup_id) {
workgroup_id = define_input(U32[3], spv::BuiltIn::WorkgroupId); workgroup_id = define_input(U32[3], spv::BuiltIn::WorkgroupId);
@ -155,6 +162,39 @@ void EmitContext::DefineSpecialVariables(const Info& info) {
if (info.uses_local_invocation_id) { if (info.uses_local_invocation_id) {
local_invocation_id = define_input(U32[3], spv::BuiltIn::LocalInvocationId); local_invocation_id = define_input(U32[3], spv::BuiltIn::LocalInvocationId);
} }
if (info.loads_position) {
const bool is_fragment{stage != Stage::Fragment};
const spv::BuiltIn built_in{is_fragment ? spv::BuiltIn::Position : spv::BuiltIn::FragCoord};
input_position = define_input(F32[4], built_in);
}
for (size_t i = 0; i < info.loads_generics.size(); ++i) {
if (info.loads_generics[i]) {
// FIXME: Declare size from input
input_generics[i] = define_input(F32[4], std::nullopt);
Decorate(input_generics[i], spv::Decoration::Location, static_cast<u32>(i));
Name(input_generics[i], fmt::format("in_attr{}", i));
}
}
if (info.stores_position) {
output_position = define_output(F32[4], spv::BuiltIn::Position);
}
for (size_t i = 0; i < info.stores_generics.size(); ++i) {
if (info.stores_generics[i]) {
output_generics[i] = define_output(F32[4], std::nullopt);
Decorate(output_generics[i], spv::Decoration::Location, static_cast<u32>(i));
Name(output_generics[i], fmt::format("out_attr{}", i));
}
}
if (stage == Stage::Fragment) {
for (size_t i = 0; i < 8; ++i) {
if (!info.stores_frag_color[i]) {
continue;
}
frag_color[i] = define_output(F32[4], std::nullopt);
Decorate(frag_color[i], spv::Decoration::Location, static_cast<u32>(i));
Name(frag_color[i], fmt::format("frag_color{}", i));
}
}
} }
void EmitContext::DefineConstantBuffers(const Info& info, u32& binding) { void EmitContext::DefineConstantBuffers(const Info& info, u32& binding) {

View file

@ -46,7 +46,7 @@ struct UniformDefinitions {
class EmitContext final : public Sirit::Module { class EmitContext final : public Sirit::Module {
public: public:
explicit EmitContext(const Profile& profile, IR::Program& program); explicit EmitContext(const Profile& profile, IR::Program& program, u32& binding);
~EmitContext(); ~EmitContext();
[[nodiscard]] Id Def(const IR::Value& value); [[nodiscard]] Id Def(const IR::Value& value);
@ -71,6 +71,9 @@ public:
UniformDefinitions uniform_types; UniformDefinitions uniform_types;
Id input_f32{};
Id output_f32{};
Id storage_u32{}; Id storage_u32{};
std::array<UniformDefinitions, Info::MAX_CBUFS> cbufs{}; std::array<UniformDefinitions, Info::MAX_CBUFS> cbufs{};
@ -80,10 +83,21 @@ public:
Id workgroup_id{}; Id workgroup_id{};
Id local_invocation_id{}; Id local_invocation_id{};
Id input_position{};
std::array<Id, 32> input_generics{};
Id output_position{};
std::array<Id, 32> output_generics{};
std::array<Id, 8> frag_color{};
Id frag_depth {};
std::vector<Id> interfaces;
private: private:
void DefineCommonTypes(const Info& info); void DefineCommonTypes(const Info& info);
void DefineCommonConstants(); void DefineCommonConstants();
void DefineSpecialVariables(const Info& info); void DefineInterfaces(const Info& info, Stage stage);
void DefineConstantBuffers(const Info& info, u32& binding); void DefineConstantBuffers(const Info& info, u32& binding);
void DefineConstantBuffers(const Info& info, Id UniformDefinitions::*member_type, u32 binding, void DefineConstantBuffers(const Info& info, Id UniformDefinitions::*member_type, u32 binding,
Id type, char type_char, u32 element_size); Id type, char type_char, u32 element_size);

View file

@ -54,6 +54,8 @@ ArgType Arg(EmitContext& ctx, const IR::Value& arg) {
return arg.U32(); return arg.U32();
} else if constexpr (std::is_same_v<ArgType, IR::Block*>) { } else if constexpr (std::is_same_v<ArgType, IR::Block*>) {
return arg.Label(); return arg.Label();
} else if constexpr (std::is_same_v<ArgType, IR::Attribute>) {
return arg.Attribute();
} }
} }
@ -197,8 +199,9 @@ Id PhiArgDef(EmitContext& ctx, IR::Inst* inst, size_t index) {
} }
} // Anonymous namespace } // Anonymous namespace
std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env, IR::Program& program) { std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env, IR::Program& program,
EmitContext ctx{profile, program}; u32& binding) {
EmitContext ctx{profile, program, binding};
const Id void_function{ctx.TypeFunction(ctx.void_id)}; const Id void_function{ctx.TypeFunction(ctx.void_id)};
const Id func{ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function)}; const Id func{ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function)};
for (IR::Block* const block : program.blocks) { for (IR::Block* const block : program.blocks) {
@ -208,28 +211,41 @@ std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env, IR::Program
} }
} }
ctx.OpFunctionEnd(); ctx.OpFunctionEnd();
boost::container::small_vector<Id, 32> interfaces;
const Info& info{program.info};
if (info.uses_workgroup_id) {
interfaces.push_back(ctx.workgroup_id);
}
if (info.uses_local_invocation_id) {
interfaces.push_back(ctx.local_invocation_id);
}
const std::span interfaces_span(interfaces.data(), interfaces.size());
ctx.AddEntryPoint(spv::ExecutionModel::GLCompute, func, "main", interfaces_span);
const std::array<u32, 3> workgroup_size{env.WorkgroupSize()}; const std::span interfaces(ctx.interfaces.data(), ctx.interfaces.size());
ctx.AddExecutionMode(func, spv::ExecutionMode::LocalSize, workgroup_size[0], workgroup_size[1], spv::ExecutionModel execution_model{};
workgroup_size[2]); switch (env.ShaderStage()) {
case Shader::Stage::Compute: {
const std::array<u32, 3> workgroup_size{env.WorkgroupSize()};
execution_model = spv::ExecutionModel::GLCompute;
ctx.AddExecutionMode(func, spv::ExecutionMode::LocalSize, workgroup_size[0],
workgroup_size[1], workgroup_size[2]);
break;
}
case Shader::Stage::VertexB:
execution_model = spv::ExecutionModel::Vertex;
break;
case Shader::Stage::Fragment:
execution_model = spv::ExecutionModel::Fragment;
ctx.AddExecutionMode(func, spv::ExecutionMode::OriginUpperLeft);
break;
default:
throw NotImplementedException("Stage {}", env.ShaderStage());
}
ctx.AddEntryPoint(execution_model, func, "main", interfaces);
SetupDenormControl(profile, program, ctx, func); SetupDenormControl(profile, program, ctx, func);
const Info& info{program.info};
if (info.uses_sampled_1d) { if (info.uses_sampled_1d) {
ctx.AddCapability(spv::Capability::Sampled1D); ctx.AddCapability(spv::Capability::Sampled1D);
} }
if (info.uses_sparse_residency) { if (info.uses_sparse_residency) {
ctx.AddCapability(spv::Capability::SparseResidency); ctx.AddCapability(spv::Capability::SparseResidency);
} }
if (info.uses_demote_to_helper_invocation) {
ctx.AddExtension("SPV_EXT_demote_to_helper_invocation");
ctx.AddCapability(spv::Capability::DemoteToHelperInvocationEXT);
}
// TODO: Track this usage // TODO: Track this usage
ctx.AddCapability(spv::Capability::ImageGatherExtended); ctx.AddCapability(spv::Capability::ImageGatherExtended);

View file

@ -16,18 +16,18 @@
namespace Shader::Backend::SPIRV { namespace Shader::Backend::SPIRV {
[[nodiscard]] std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env, [[nodiscard]] std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env,
IR::Program& program); IR::Program& program, u32& binding);
// Microinstruction emitters // Microinstruction emitters
Id EmitPhi(EmitContext& ctx, IR::Inst* inst); Id EmitPhi(EmitContext& ctx, IR::Inst* inst);
void EmitVoid(EmitContext& ctx); void EmitVoid(EmitContext& ctx);
Id EmitIdentity(EmitContext& ctx, const IR::Value& value); Id EmitIdentity(EmitContext& ctx, const IR::Value& value);
void EmitBranch(EmitContext& ctx, IR::Block* label); void EmitBranch(EmitContext& ctx, Id label);
void EmitBranchConditional(EmitContext& ctx, Id condition, IR::Block* true_label, void EmitBranchConditional(EmitContext& ctx, Id condition, Id true_label, Id false_label);
IR::Block* false_label); void EmitLoopMerge(EmitContext& ctx, Id merge_label, Id continue_label);
void EmitLoopMerge(EmitContext& ctx, IR::Block* merge_label, IR::Block* continue_label); void EmitSelectionMerge(EmitContext& ctx, Id merge_label);
void EmitSelectionMerge(EmitContext& ctx, IR::Block* merge_label);
void EmitReturn(EmitContext& ctx); void EmitReturn(EmitContext& ctx);
void EmitDemoteToHelperInvocation(EmitContext& ctx, Id continue_label);
void EmitGetRegister(EmitContext& ctx); void EmitGetRegister(EmitContext& ctx);
void EmitSetRegister(EmitContext& ctx); void EmitSetRegister(EmitContext& ctx);
void EmitGetPred(EmitContext& ctx); void EmitGetPred(EmitContext& ctx);
@ -41,10 +41,12 @@ Id EmitGetCbufS16(EmitContext& ctx, const IR::Value& binding, const IR::Value& o
Id EmitGetCbufU32(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset); Id EmitGetCbufU32(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset);
Id EmitGetCbufF32(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset); Id EmitGetCbufF32(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset);
Id EmitGetCbufU64(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset); Id EmitGetCbufU64(EmitContext& ctx, const IR::Value& binding, const IR::Value& offset);
void EmitGetAttribute(EmitContext& ctx); Id EmitGetAttribute(EmitContext& ctx, IR::Attribute attr);
void EmitSetAttribute(EmitContext& ctx); void EmitSetAttribute(EmitContext& ctx, IR::Attribute attr, Id value);
void EmitGetAttributeIndexed(EmitContext& ctx); void EmitGetAttributeIndexed(EmitContext& ctx);
void EmitSetAttributeIndexed(EmitContext& ctx); void EmitSetAttributeIndexed(EmitContext& ctx);
void EmitSetFragColor(EmitContext& ctx, u32 index, u32 component, Id value);
void EmitSetFragDepth(EmitContext& ctx, Id value);
void EmitGetZFlag(EmitContext& ctx); void EmitGetZFlag(EmitContext& ctx);
void EmitGetSFlag(EmitContext& ctx); void EmitGetSFlag(EmitContext& ctx);
void EmitGetCFlag(EmitContext& ctx); void EmitGetCFlag(EmitContext& ctx);

View file

@ -5,6 +5,43 @@
#include "shader_recompiler/backend/spirv/emit_spirv.h" #include "shader_recompiler/backend/spirv/emit_spirv.h"
namespace Shader::Backend::SPIRV { namespace Shader::Backend::SPIRV {
namespace {
Id InputAttrPointer(EmitContext& ctx, IR::Attribute attr) {
const u32 element{static_cast<u32>(attr) % 4};
const auto element_id{[&] { return ctx.Constant(ctx.U32[1], element); }};
if (IR::IsGeneric(attr)) {
const u32 index{IR::GenericAttributeIndex(attr)};
return ctx.OpAccessChain(ctx.input_f32, ctx.input_generics.at(index), element_id());
}
switch (attr) {
case IR::Attribute::PositionX:
case IR::Attribute::PositionY:
case IR::Attribute::PositionZ:
case IR::Attribute::PositionW:
return ctx.OpAccessChain(ctx.input_f32, ctx.input_position, element_id());
default:
throw NotImplementedException("Read attribute {}", attr);
}
}
Id OutputAttrPointer(EmitContext& ctx, IR::Attribute attr) {
const u32 element{static_cast<u32>(attr) % 4};
const auto element_id{[&] { return ctx.Constant(ctx.U32[1], element); }};
if (IR::IsGeneric(attr)) {
const u32 index{IR::GenericAttributeIndex(attr)};
return ctx.OpAccessChain(ctx.output_f32, ctx.output_generics.at(index), element_id());
}
switch (attr) {
case IR::Attribute::PositionX:
case IR::Attribute::PositionY:
case IR::Attribute::PositionZ:
case IR::Attribute::PositionW:
return ctx.OpAccessChain(ctx.output_f32, ctx.output_position, element_id());
default:
throw NotImplementedException("Read attribute {}", attr);
}
}
} // Anonymous namespace
void EmitGetRegister(EmitContext&) { void EmitGetRegister(EmitContext&) {
throw NotImplementedException("SPIR-V Instruction"); throw NotImplementedException("SPIR-V Instruction");
@ -87,12 +124,12 @@ Id EmitGetCbufU64(EmitContext& ctx, const IR::Value& binding, const IR::Value& o
return GetCbuf(ctx, ctx.U64, &UniformDefinitions::U64, sizeof(u64), binding, offset); return GetCbuf(ctx, ctx.U64, &UniformDefinitions::U64, sizeof(u64), binding, offset);
} }
void EmitGetAttribute(EmitContext&) { Id EmitGetAttribute(EmitContext& ctx, IR::Attribute attr) {
throw NotImplementedException("SPIR-V Instruction"); return ctx.OpLoad(ctx.F32[1], InputAttrPointer(ctx, attr));
} }
void EmitSetAttribute(EmitContext&) { void EmitSetAttribute(EmitContext& ctx, IR::Attribute attr, Id value) {
throw NotImplementedException("SPIR-V Instruction"); ctx.OpStore(OutputAttrPointer(ctx, attr), value);
} }
void EmitGetAttributeIndexed(EmitContext&) { void EmitGetAttributeIndexed(EmitContext&) {
@ -103,6 +140,16 @@ void EmitSetAttributeIndexed(EmitContext&) {
throw NotImplementedException("SPIR-V Instruction"); throw NotImplementedException("SPIR-V Instruction");
} }
void EmitSetFragColor(EmitContext& ctx, u32 index, u32 component, Id value) {
const Id component_id{ctx.Constant(ctx.U32[1], component)};
const Id pointer{ctx.OpAccessChain(ctx.output_f32, ctx.frag_color.at(index), component_id)};
ctx.OpStore(pointer, value);
}
void EmitSetFragDepth(EmitContext& ctx, Id value) {
ctx.OpStore(ctx.frag_depth, value);
}
void EmitGetZFlag(EmitContext&) { void EmitGetZFlag(EmitContext&) {
throw NotImplementedException("SPIR-V Instruction"); throw NotImplementedException("SPIR-V Instruction");
} }

View file

@ -6,26 +6,29 @@
namespace Shader::Backend::SPIRV { namespace Shader::Backend::SPIRV {
void EmitBranch(EmitContext& ctx, IR::Block* label) { void EmitBranch(EmitContext& ctx, Id label) {
ctx.OpBranch(label->Definition<Id>()); ctx.OpBranch(label);
} }
void EmitBranchConditional(EmitContext& ctx, Id condition, IR::Block* true_label, void EmitBranchConditional(EmitContext& ctx, Id condition, Id true_label, Id false_label) {
IR::Block* false_label) { ctx.OpBranchConditional(condition, true_label, false_label);
ctx.OpBranchConditional(condition, true_label->Definition<Id>(), false_label->Definition<Id>());
} }
void EmitLoopMerge(EmitContext& ctx, IR::Block* merge_label, IR::Block* continue_label) { void EmitLoopMerge(EmitContext& ctx, Id merge_label, Id continue_label) {
ctx.OpLoopMerge(merge_label->Definition<Id>(), continue_label->Definition<Id>(), ctx.OpLoopMerge(merge_label, continue_label, spv::LoopControlMask::MaskNone);
spv::LoopControlMask::MaskNone);
} }
void EmitSelectionMerge(EmitContext& ctx, IR::Block* merge_label) { void EmitSelectionMerge(EmitContext& ctx, Id merge_label) {
ctx.OpSelectionMerge(merge_label->Definition<Id>(), spv::SelectionControlMask::MaskNone); ctx.OpSelectionMerge(merge_label, spv::SelectionControlMask::MaskNone);
} }
void EmitReturn(EmitContext& ctx) { void EmitReturn(EmitContext& ctx) {
ctx.OpReturn(); ctx.OpReturn();
} }
void EmitDemoteToHelperInvocation(EmitContext& ctx, Id continue_label) {
ctx.OpDemoteToHelperInvocationEXT();
ctx.OpBranch(continue_label);
}
} // namespace Shader::Backend::SPIRV } // namespace Shader::Backend::SPIRV

View file

@ -3,6 +3,8 @@
#include <array> #include <array>
#include "common/common_types.h" #include "common/common_types.h"
#include "shader_recompiler/stage.h"
#include "shader_recompiler/program_header.h"
namespace Shader { namespace Shader {
@ -15,6 +17,18 @@ public:
[[nodiscard]] virtual u32 TextureBoundBuffer() = 0; [[nodiscard]] virtual u32 TextureBoundBuffer() = 0;
[[nodiscard]] virtual std::array<u32, 3> WorkgroupSize() = 0; [[nodiscard]] virtual std::array<u32, 3> WorkgroupSize() = 0;
[[nodiscard]] const ProgramHeader& SPH() const noexcept {
return sph;
}
[[nodiscard]] Stage ShaderStage() const noexcept {
return stage;
}
protected:
ProgramHeader sph{};
Stage stage{};
}; };
} // namespace Shader } // namespace Shader

View file

@ -13,7 +13,7 @@ bool IsGeneric(Attribute attribute) noexcept {
return attribute >= Attribute::Generic0X && attribute <= Attribute::Generic31X; return attribute >= Attribute::Generic0X && attribute <= Attribute::Generic31X;
} }
int GenericAttributeIndex(Attribute attribute) { u32 GenericAttributeIndex(Attribute attribute) {
if (!IsGeneric(attribute)) { if (!IsGeneric(attribute)) {
throw InvalidArgument("Attribute is not generic {}", attribute); throw InvalidArgument("Attribute is not generic {}", attribute);
} }

View file

@ -224,7 +224,7 @@ enum class Attribute : u64 {
[[nodiscard]] bool IsGeneric(Attribute attribute) noexcept; [[nodiscard]] bool IsGeneric(Attribute attribute) noexcept;
[[nodiscard]] int GenericAttributeIndex(Attribute attribute); [[nodiscard]] u32 GenericAttributeIndex(Attribute attribute);
[[nodiscard]] std::string NameOf(Attribute attribute); [[nodiscard]] std::string NameOf(Attribute attribute);

View file

@ -82,6 +82,12 @@ void IREmitter::Return() {
Inst(Opcode::Return); Inst(Opcode::Return);
} }
void IREmitter::DemoteToHelperInvocation(Block* continue_label) {
block->SetBranch(continue_label);
continue_label->AddImmediatePredecessor(block);
Inst(Opcode::DemoteToHelperInvocation, continue_label);
}
U32 IREmitter::GetReg(IR::Reg reg) { U32 IREmitter::GetReg(IR::Reg reg) {
return Inst<U32>(Opcode::GetRegister, reg); return Inst<U32>(Opcode::GetRegister, reg);
} }
@ -248,6 +254,14 @@ void IREmitter::SetAttribute(IR::Attribute attribute, const F32& value) {
Inst(Opcode::SetAttribute, attribute, value); Inst(Opcode::SetAttribute, attribute, value);
} }
void IREmitter::SetFragColor(u32 index, u32 component, const F32& value) {
Inst(Opcode::SetFragColor, Imm32(index), Imm32(component), value);
}
void IREmitter::SetFragDepth(const F32& value) {
Inst(Opcode::SetFragDepth, value);
}
U32 IREmitter::WorkgroupIdX() { U32 IREmitter::WorkgroupIdX() {
return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 0)}; return U32{CompositeExtract(Inst(Opcode::WorkgroupId), 0)};
} }

View file

@ -36,6 +36,7 @@ public:
void LoopMerge(Block* merge_block, Block* continue_target); void LoopMerge(Block* merge_block, Block* continue_target);
void SelectionMerge(Block* merge_block); void SelectionMerge(Block* merge_block);
void Return(); void Return();
void DemoteToHelperInvocation(Block* continue_label);
[[nodiscard]] U32 GetReg(IR::Reg reg); [[nodiscard]] U32 GetReg(IR::Reg reg);
void SetReg(IR::Reg reg, const U32& value); void SetReg(IR::Reg reg, const U32& value);
@ -67,6 +68,9 @@ public:
[[nodiscard]] F32 GetAttribute(IR::Attribute attribute); [[nodiscard]] F32 GetAttribute(IR::Attribute attribute);
void SetAttribute(IR::Attribute attribute, const F32& value); void SetAttribute(IR::Attribute attribute, const F32& value);
void SetFragColor(u32 index, u32 component, const F32& value);
void SetFragDepth(const F32& value);
[[nodiscard]] U32 WorkgroupIdX(); [[nodiscard]] U32 WorkgroupIdX();
[[nodiscard]] U32 WorkgroupIdY(); [[nodiscard]] U32 WorkgroupIdY();
[[nodiscard]] U32 WorkgroupIdZ(); [[nodiscard]] U32 WorkgroupIdZ();

View file

@ -55,8 +55,11 @@ bool Inst::MayHaveSideEffects() const noexcept {
case Opcode::LoopMerge: case Opcode::LoopMerge:
case Opcode::SelectionMerge: case Opcode::SelectionMerge:
case Opcode::Return: case Opcode::Return:
case Opcode::DemoteToHelperInvocation:
case Opcode::SetAttribute: case Opcode::SetAttribute:
case Opcode::SetAttributeIndexed: case Opcode::SetAttributeIndexed:
case Opcode::SetFragColor:
case Opcode::SetFragDepth:
case Opcode::WriteGlobalU8: case Opcode::WriteGlobalU8:
case Opcode::WriteGlobalS8: case Opcode::WriteGlobalS8:
case Opcode::WriteGlobalU16: case Opcode::WriteGlobalU16:

View file

@ -13,6 +13,7 @@ OPCODE(BranchConditional, Void, U1,
OPCODE(LoopMerge, Void, Label, Label, ) OPCODE(LoopMerge, Void, Label, Label, )
OPCODE(SelectionMerge, Void, Label, ) OPCODE(SelectionMerge, Void, Label, )
OPCODE(Return, Void, ) OPCODE(Return, Void, )
OPCODE(DemoteToHelperInvocation, Void, Label, )
// Context getters/setters // Context getters/setters
OPCODE(GetRegister, U32, Reg, ) OPCODE(GetRegister, U32, Reg, )
@ -28,10 +29,12 @@ OPCODE(GetCbufS16, U32, U32,
OPCODE(GetCbufU32, U32, U32, U32, ) OPCODE(GetCbufU32, U32, U32, U32, )
OPCODE(GetCbufF32, F32, U32, U32, ) OPCODE(GetCbufF32, F32, U32, U32, )
OPCODE(GetCbufU64, U64, U32, U32, ) OPCODE(GetCbufU64, U64, U32, U32, )
OPCODE(GetAttribute, U32, Attribute, ) OPCODE(GetAttribute, F32, Attribute, )
OPCODE(SetAttribute, Void, Attribute, U32, ) OPCODE(SetAttribute, Void, Attribute, F32, )
OPCODE(GetAttributeIndexed, U32, U32, ) OPCODE(GetAttributeIndexed, F32, U32, )
OPCODE(SetAttributeIndexed, Void, U32, U32, ) OPCODE(SetAttributeIndexed, Void, U32, F32, )
OPCODE(SetFragColor, Void, U32, U32, F32, )
OPCODE(SetFragDepth, Void, F32, )
OPCODE(GetZFlag, U1, Void, ) OPCODE(GetZFlag, U1, Void, )
OPCODE(GetSFlag, U1, Void, ) OPCODE(GetSFlag, U1, Void, )
OPCODE(GetCFlag, U1, Void, ) OPCODE(GetCFlag, U1, Void, )

View file

@ -10,6 +10,7 @@
#include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/shader_info.h" #include "shader_recompiler/shader_info.h"
#include "shader_recompiler/stage.h"
namespace Shader::IR { namespace Shader::IR {
@ -17,6 +18,7 @@ struct Program {
BlockList blocks; BlockList blocks;
BlockList post_order_blocks; BlockList post_order_blocks;
Info info; Info info;
Stage stage{};
}; };
[[nodiscard]] std::string DumpProgram(const Program& program); [[nodiscard]] std::string DumpProgram(const Program& program);

View file

@ -293,12 +293,12 @@ constexpr size_t NUM_REGS = 256;
return reg + (-num); return reg + (-num);
} }
[[nodiscard]] constexpr Reg operator++(Reg& reg) { constexpr Reg operator++(Reg& reg) {
reg = reg + 1; reg = reg + 1;
return reg; return reg;
} }
[[nodiscard]] constexpr Reg operator++(Reg& reg, int) { constexpr Reg operator++(Reg& reg, int) {
const Reg copy{reg}; const Reg copy{reg};
reg = reg + 1; reg = reg + 1;
return copy; return copy;

View file

@ -104,6 +104,7 @@ bool HasFlowTest(Opcode opcode) {
case Opcode::EXIT: case Opcode::EXIT:
case Opcode::JMP: case Opcode::JMP:
case Opcode::JMX: case Opcode::JMX:
case Opcode::KIL:
case Opcode::BRK: case Opcode::BRK:
case Opcode::CONT: case Opcode::CONT:
case Opcode::LONGJMP: case Opcode::LONGJMP:
@ -287,6 +288,13 @@ CFG::AnalysisState CFG::AnalyzeInst(Block* block, FunctionId function_id, Locati
block->end = pc; block->end = pc;
return AnalysisState::Branch; return AnalysisState::Branch;
} }
case Opcode::KIL: {
const Predicate pred{inst.Pred()};
const auto ir_pred{static_cast<IR::Pred>(pred.index)};
const IR::Condition cond{inst.branch.flow_test, ir_pred, pred.negated};
AnalyzeCondInst(block, function_id, pc, EndClass::Kill, cond);
return AnalysisState::Branch;
}
case Opcode::PBK: case Opcode::PBK:
case Opcode::PCNT: case Opcode::PCNT:
case Opcode::PEXIT: case Opcode::PEXIT:
@ -324,13 +332,12 @@ CFG::AnalysisState CFG::AnalyzeInst(Block* block, FunctionId function_id, Locati
return AnalysisState::Continue; return AnalysisState::Continue;
} }
const IR::Condition cond{static_cast<IR::Pred>(pred.index), pred.negated}; const IR::Condition cond{static_cast<IR::Pred>(pred.index), pred.negated};
AnalyzeCondInst(block, function_id, pc, EndClass::Branch, cond, true); AnalyzeCondInst(block, function_id, pc, EndClass::Branch, cond);
return AnalysisState::Branch; return AnalysisState::Branch;
} }
void CFG::AnalyzeCondInst(Block* block, FunctionId function_id, Location pc, void CFG::AnalyzeCondInst(Block* block, FunctionId function_id, Location pc,
EndClass insn_end_class, IR::Condition cond, EndClass insn_end_class, IR::Condition cond) {
bool visit_conditional_inst) {
if (block->begin != pc) { if (block->begin != pc) {
// If the block doesn't start in the conditional instruction // If the block doesn't start in the conditional instruction
// mark it as a label to visit it later // mark it as a label to visit it later
@ -356,14 +363,16 @@ void CFG::AnalyzeCondInst(Block* block, FunctionId function_id, Location pc,
// Impersonate the visited block with a virtual block // Impersonate the visited block with a virtual block
*block = std::move(virtual_block); *block = std::move(virtual_block);
// Set the end properties of the conditional instruction // Set the end properties of the conditional instruction
conditional_block->end = visit_conditional_inst ? (pc + 1) : pc; conditional_block->end = pc + 1;
conditional_block->end_class = insn_end_class; conditional_block->end_class = insn_end_class;
// Add a label to the instruction after the conditional instruction // Add a label to the instruction after the conditional instruction
Block* const endif_block{AddLabel(conditional_block, block->stack, pc + 1, function_id)}; Block* const endif_block{AddLabel(conditional_block, block->stack, pc + 1, function_id)};
// Branch to the next instruction from the virtual block // Branch to the next instruction from the virtual block
block->branch_false = endif_block; block->branch_false = endif_block;
// And branch to it from the conditional instruction if it is a branch // And branch to it from the conditional instruction if it is a branch or a kill instruction
if (insn_end_class == EndClass::Branch) { // Kill instructions are considered a branch because they demote to a helper invocation and
// execution may continue.
if (insn_end_class == EndClass::Branch || insn_end_class == EndClass::Kill) {
conditional_block->cond = IR::Condition{true}; conditional_block->cond = IR::Condition{true};
conditional_block->branch_true = endif_block; conditional_block->branch_true = endif_block;
conditional_block->branch_false = nullptr; conditional_block->branch_false = nullptr;
@ -415,7 +424,7 @@ CFG::AnalysisState CFG::AnalyzeEXIT(Block* block, FunctionId function_id, Locati
throw NotImplementedException("Conditional EXIT with PEXIT token"); throw NotImplementedException("Conditional EXIT with PEXIT token");
} }
const IR::Condition cond{flow_test, static_cast<IR::Pred>(pred.index), pred.negated}; const IR::Condition cond{flow_test, static_cast<IR::Pred>(pred.index), pred.negated};
AnalyzeCondInst(block, function_id, pc, EndClass::Exit, cond, false); AnalyzeCondInst(block, function_id, pc, EndClass::Exit, cond);
return AnalysisState::Branch; return AnalysisState::Branch;
} }
if (const std::optional<Location> exit_pc{block->stack.Peek(Token::PEXIT)}) { if (const std::optional<Location> exit_pc{block->stack.Peek(Token::PEXIT)}) {
@ -425,7 +434,7 @@ CFG::AnalysisState CFG::AnalyzeEXIT(Block* block, FunctionId function_id, Locati
block->branch_false = nullptr; block->branch_false = nullptr;
return AnalysisState::Branch; return AnalysisState::Branch;
} }
block->end = pc; block->end = pc + 1;
block->end_class = EndClass::Exit; block->end_class = EndClass::Exit;
return AnalysisState::Branch; return AnalysisState::Branch;
} }
@ -505,6 +514,12 @@ std::string CFG::Dot() const {
node_uid); node_uid);
++node_uid; ++node_uid;
break; break;
case EndClass::Kill:
dot += fmt::format("\t\t{}->N{};\n", name, node_uid);
dot += fmt::format("\t\tN{} [label=\"Kill\"][shape=square][style=stripped];\n",
node_uid);
++node_uid;
break;
} }
} }
if (function.entrypoint == 8) { if (function.entrypoint == 8) {

View file

@ -29,6 +29,7 @@ enum class EndClass {
Call, Call,
Exit, Exit,
Return, Return,
Kill,
}; };
enum class Token { enum class Token {
@ -130,7 +131,7 @@ private:
AnalysisState AnalyzeInst(Block* block, FunctionId function_id, Location pc); AnalysisState AnalyzeInst(Block* block, FunctionId function_id, Location pc);
void AnalyzeCondInst(Block* block, FunctionId function_id, Location pc, EndClass insn_end_class, void AnalyzeCondInst(Block* block, FunctionId function_id, Location pc, EndClass insn_end_class,
IR::Condition cond, bool visit_conditional_inst); IR::Condition cond);
/// Return true when the branch instruction is confirmed to be a branch /// Return true when the branch instruction is confirmed to be a branch
bool AnalyzeBranch(Block* block, FunctionId function_id, Location pc, Instruction inst, bool AnalyzeBranch(Block* block, FunctionId function_id, Location pc, Instruction inst,

View file

@ -32,6 +32,7 @@ IR::Program TranslateProgram(ObjectPool<IR::Inst>& inst_pool, ObjectPool<IR::Blo
IR::Program program; IR::Program program;
program.blocks = VisitAST(inst_pool, block_pool, env, cfg); program.blocks = VisitAST(inst_pool, block_pool, env, cfg);
program.post_order_blocks = PostOrder(program.blocks); program.post_order_blocks = PostOrder(program.blocks);
program.stage = env.ShaderStage();
RemoveUnreachableBlocks(program); RemoveUnreachableBlocks(program);
// Replace instructions before the SSA rewrite // Replace instructions before the SSA rewrite

View file

@ -45,6 +45,7 @@ enum class StatementType {
Loop, Loop,
Break, Break,
Return, Return,
Kill,
Function, Function,
Identity, Identity,
Not, Not,
@ -70,6 +71,7 @@ struct If {};
struct Loop {}; struct Loop {};
struct Break {}; struct Break {};
struct Return {}; struct Return {};
struct Kill {};
struct FunctionTag {}; struct FunctionTag {};
struct Identity {}; struct Identity {};
struct Not {}; struct Not {};
@ -93,6 +95,7 @@ struct Statement : ListBaseHook {
Statement(Break, Statement* cond_, Statement* up_) Statement(Break, Statement* cond_, Statement* up_)
: cond{cond_}, up{up_}, type{StatementType::Break} {} : cond{cond_}, up{up_}, type{StatementType::Break} {}
Statement(Return) : type{StatementType::Return} {} Statement(Return) : type{StatementType::Return} {}
Statement(Kill) : type{StatementType::Kill} {}
Statement(FunctionTag) : children{}, type{StatementType::Function} {} Statement(FunctionTag) : children{}, type{StatementType::Function} {}
Statement(Identity, IR::Condition cond_) : guest_cond{cond_}, type{StatementType::Identity} {} Statement(Identity, IR::Condition cond_) : guest_cond{cond_}, type{StatementType::Identity} {}
Statement(Not, Statement* op_) : op{op_}, type{StatementType::Not} {} Statement(Not, Statement* op_) : op{op_}, type{StatementType::Not} {}
@ -174,6 +177,9 @@ std::string DumpTree(const Tree& tree, u32 indentation = 0) {
case StatementType::Return: case StatementType::Return:
ret += fmt::format("{} return;\n", indent); ret += fmt::format("{} return;\n", indent);
break; break;
case StatementType::Kill:
ret += fmt::format("{} kill;\n", indent);
break;
case StatementType::SetVariable: case StatementType::SetVariable:
ret += fmt::format("{} goto_L{} = {};\n", indent, stmt->id, DumpExpr(stmt->op)); ret += fmt::format("{} goto_L{} = {};\n", indent, stmt->id, DumpExpr(stmt->op));
break; break;
@ -424,6 +430,9 @@ private:
gotos.push_back(root.insert(ip, *goto_stmt)); gotos.push_back(root.insert(ip, *goto_stmt));
break; break;
} }
case Flow::EndClass::Kill:
root.insert(ip, *pool.Create(Kill{}));
break;
} }
} }
} }
@ -729,6 +738,15 @@ private:
current_block = nullptr; current_block = nullptr;
break; break;
} }
case StatementType::Kill: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::IREmitter{*current_block}.DemoteToHelperInvocation(continue_block);
current_block = nullptr;
break;
}
default: default:
throw NotImplementedException("Statement type {}", stmt.type); throw NotImplementedException("Statement type {}", stmt.type);
} }

View file

@ -1,15 +0,0 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/common_types.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/maxwell/translate/impl/impl.h"
namespace Shader::Maxwell {
void TranslatorVisitor::EXIT(u64) {
ir.Exit();
}
} // namespace Shader::Maxwell

View file

@ -0,0 +1,43 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/common_types.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/maxwell/translate/impl/impl.h"
namespace Shader::Maxwell {
namespace {
void ExitFragment(TranslatorVisitor& v) {
const ProgramHeader sph{v.env.SPH()};
IR::Reg src_reg{IR::Reg::R0};
for (u32 render_target = 0; render_target < 8; ++render_target) {
const std::array<bool, 4> mask{sph.ps.EnabledOutputComponents(render_target)};
for (u32 component = 0; component < 4; ++component) {
if (!mask[component]) {
continue;
}
v.ir.SetFragColor(render_target, component, v.F(src_reg));
++src_reg;
}
}
if (sph.ps.omap.sample_mask != 0) {
throw NotImplementedException("Sample mask");
}
if (sph.ps.omap.depth != 0) {
throw NotImplementedException("Fragment depth");
}
}
} // Anonymous namespace
void TranslatorVisitor::EXIT() {
switch (env.ShaderStage()) {
case Stage::Fragment:
ExitFragment(*this);
break;
default:
break;
}
}
} // namespace Shader::Maxwell

View file

@ -108,7 +108,7 @@ public:
void DSETP_reg(u64 insn); void DSETP_reg(u64 insn);
void DSETP_cbuf(u64 insn); void DSETP_cbuf(u64 insn);
void DSETP_imm(u64 insn); void DSETP_imm(u64 insn);
void EXIT(u64 insn); void EXIT();
void F2F_reg(u64 insn); void F2F_reg(u64 insn);
void F2F_cbuf(u64 insn); void F2F_cbuf(u64 insn);
void F2F_imm(u64 insn); void F2F_imm(u64 insn);
@ -220,7 +220,7 @@ public:
void JCAL(u64 insn); void JCAL(u64 insn);
void JMP(u64 insn); void JMP(u64 insn);
void JMX(u64 insn); void JMX(u64 insn);
void KIL(u64 insn); void KIL();
void LD(u64 insn); void LD(u64 insn);
void LDC(u64 insn); void LDC(u64 insn);
void LDG(u64 insn); void LDG(u64 insn);

View file

@ -11,6 +11,13 @@
namespace Shader::Maxwell { namespace Shader::Maxwell {
namespace { namespace {
enum class Size : u64 {
B32,
B64,
B96,
B128,
};
enum class InterpolationMode : u64 { enum class InterpolationMode : u64 {
Pass, Pass,
Multiply, Multiply,
@ -23,8 +30,85 @@ enum class SampleMode : u64 {
Centroid, Centroid,
Offset, Offset,
}; };
int NumElements(Size size) {
switch (size) {
case Size::B32:
return 1;
case Size::B64:
return 2;
case Size::B96:
return 3;
case Size::B128:
return 4;
}
throw InvalidArgument("Invalid size {}", size);
}
} // Anonymous namespace } // Anonymous namespace
void TranslatorVisitor::ALD(u64 insn) {
union {
u64 raw;
BitField<0, 8, IR::Reg> dest_reg;
BitField<8, 8, IR::Reg> index_reg;
BitField<20, 10, u64> absolute_offset;
BitField<20, 11, s64> relative_offset;
BitField<39, 8, IR::Reg> stream_reg;
BitField<32, 1, u64> o;
BitField<31, 1, u64> patch;
BitField<47, 2, Size> size;
} const ald{insn};
if (ald.o != 0) {
throw NotImplementedException("O");
}
if (ald.patch != 0) {
throw NotImplementedException("P");
}
if (ald.index_reg != IR::Reg::RZ) {
throw NotImplementedException("Indexed");
}
const u64 offset{ald.absolute_offset.Value()};
if (offset % 4 != 0) {
throw NotImplementedException("Unaligned absolute offset {}", offset);
}
const int num_elements{NumElements(ald.size)};
for (int element = 0; element < num_elements; ++element) {
F(ald.dest_reg + element, ir.GetAttribute(IR::Attribute{offset / 4 + element}));
}
}
void TranslatorVisitor::AST(u64 insn) {
union {
u64 raw;
BitField<0, 8, IR::Reg> src_reg;
BitField<8, 8, IR::Reg> index_reg;
BitField<20, 10, u64> absolute_offset;
BitField<20, 11, s64> relative_offset;
BitField<31, 1, u64> patch;
BitField<39, 8, IR::Reg> stream_reg;
BitField<47, 2, Size> size;
} const ast{insn};
if (ast.patch != 0) {
throw NotImplementedException("P");
}
if (ast.stream_reg != IR::Reg::RZ) {
throw NotImplementedException("Stream store");
}
if (ast.index_reg != IR::Reg::RZ) {
throw NotImplementedException("Indexed store");
}
const u64 offset{ast.absolute_offset.Value()};
if (offset % 4 != 0) {
throw NotImplementedException("Unaligned absolute offset {}", offset);
}
const int num_elements{NumElements(ast.size)};
for (int element = 0; element < num_elements; ++element) {
ir.SetAttribute(IR::Attribute{offset / 4 + element}, F(ast.src_reg + element));
}
}
void TranslatorVisitor::IPA(u64 insn) { void TranslatorVisitor::IPA(u64 insn) {
// IPA is the instruction used to read varyings from a fragment shader. // IPA is the instruction used to read varyings from a fragment shader.
// gl_FragCoord is mapped to the gl_Position attribute. // gl_FragCoord is mapped to the gl_Position attribute.
@ -51,7 +135,7 @@ void TranslatorVisitor::IPA(u64 insn) {
// } // }
const bool is_indexed{ipa.idx != 0 && ipa.index_reg != IR::Reg::RZ}; const bool is_indexed{ipa.idx != 0 && ipa.index_reg != IR::Reg::RZ};
if (is_indexed) { if (is_indexed) {
throw NotImplementedException("IPA.IDX"); throw NotImplementedException("IDX");
} }
const IR::Attribute attribute{ipa.attribute}; const IR::Attribute attribute{ipa.attribute};

View file

@ -17,14 +17,6 @@ void TranslatorVisitor::AL2P(u64) {
ThrowNotImplemented(Opcode::AL2P); ThrowNotImplemented(Opcode::AL2P);
} }
void TranslatorVisitor::ALD(u64) {
ThrowNotImplemented(Opcode::ALD);
}
void TranslatorVisitor::AST(u64) {
ThrowNotImplemented(Opcode::AST);
}
void TranslatorVisitor::ATOM_cas(u64) { void TranslatorVisitor::ATOM_cas(u64) {
ThrowNotImplemented(Opcode::ATOM_cas); ThrowNotImplemented(Opcode::ATOM_cas);
} }
@ -153,10 +145,6 @@ void TranslatorVisitor::DSETP_imm(u64) {
ThrowNotImplemented(Opcode::DSETP_imm); ThrowNotImplemented(Opcode::DSETP_imm);
} }
void TranslatorVisitor::EXIT(u64) {
throw LogicError("Visting EXIT instruction");
}
void TranslatorVisitor::F2F_reg(u64) { void TranslatorVisitor::F2F_reg(u64) {
ThrowNotImplemented(Opcode::F2F_reg); ThrowNotImplemented(Opcode::F2F_reg);
} }
@ -345,8 +333,8 @@ void TranslatorVisitor::JMX(u64) {
ThrowNotImplemented(Opcode::JMX); ThrowNotImplemented(Opcode::JMX);
} }
void TranslatorVisitor::KIL(u64) { void TranslatorVisitor::KIL() {
ThrowNotImplemented(Opcode::KIL); // KIL is a no-op
} }
void TranslatorVisitor::LD(u64) { void TranslatorVisitor::LD(u64) {

View file

@ -215,7 +215,7 @@ void TranslatorVisitor::TEX(u64 insn) {
BitField<36, 13, u64> cbuf_offset; BitField<36, 13, u64> cbuf_offset;
} const tex{insn}; } const tex{insn};
Impl(*this, insn, tex.aoffi != 0, tex.blod, tex.lc != 0, static_cast<u32>(tex.cbuf_offset)); Impl(*this, insn, tex.aoffi != 0, tex.blod, tex.lc != 0, static_cast<u32>(tex.cbuf_offset * 4));
} }
void TranslatorVisitor::TEX_b(u64 insn) { void TranslatorVisitor::TEX_b(u64 insn) {

View file

@ -70,7 +70,7 @@ IR::F32 ReadArray(TranslatorVisitor& v, const IR::U32& value) {
IR::Value Sample(TranslatorVisitor& v, u64 insn) { IR::Value Sample(TranslatorVisitor& v, u64 insn) {
const Encoding texs{insn}; const Encoding texs{insn};
const IR::U32 handle{v.ir.Imm32(static_cast<u32>(texs.cbuf_offset))}; const IR::U32 handle{v.ir.Imm32(static_cast<u32>(texs.cbuf_offset * 4))};
const IR::F32 zero{v.ir.Imm32(0.0f)}; const IR::F32 zero{v.ir.Imm32(0.0f)};
const IR::Reg reg_a{texs.src_reg_a}; const IR::Reg reg_a{texs.src_reg_a};
const IR::Reg reg_b{texs.src_reg_b}; const IR::Reg reg_b{texs.src_reg_b};

View file

@ -17,10 +17,47 @@ void AddConstantBufferDescriptor(Info& info, u32 index, u32 count) {
return; return;
} }
info.constant_buffer_mask |= 1U << index; info.constant_buffer_mask |= 1U << index;
info.constant_buffer_descriptors.push_back({
.index{index}, auto& cbufs{info.constant_buffer_descriptors};
.count{1}, cbufs.insert(std::ranges::lower_bound(cbufs, index, {}, &ConstantBufferDescriptor::index),
}); ConstantBufferDescriptor{
.index{index},
.count{1},
});
}
void GetAttribute(Info& info, IR::Attribute attribute) {
if (IR::IsGeneric(attribute)) {
info.loads_generics.at(IR::GenericAttributeIndex(attribute)) = true;
return;
}
switch (attribute) {
case IR::Attribute::PositionX:
case IR::Attribute::PositionY:
case IR::Attribute::PositionZ:
case IR::Attribute::PositionW:
info.loads_position = true;
break;
default:
throw NotImplementedException("Get attribute {}", attribute);
}
}
void SetAttribute(Info& info, IR::Attribute attribute) {
if (IR::IsGeneric(attribute)) {
info.stores_generics.at(IR::GenericAttributeIndex(attribute)) = true;
return;
}
switch (attribute) {
case IR::Attribute::PositionX:
case IR::Attribute::PositionY:
case IR::Attribute::PositionZ:
case IR::Attribute::PositionW:
info.stores_position = true;
break;
default:
throw NotImplementedException("Set attribute {}", attribute);
}
} }
void VisitUsages(Info& info, IR::Inst& inst) { void VisitUsages(Info& info, IR::Inst& inst) {
@ -162,6 +199,21 @@ void VisitUsages(Info& info, IR::Inst& inst) {
break; break;
} }
switch (inst.Opcode()) { switch (inst.Opcode()) {
case IR::Opcode::DemoteToHelperInvocation:
info.uses_demote_to_helper_invocation = true;
break;
case IR::Opcode::GetAttribute:
GetAttribute(info, inst.Arg(0).Attribute());
break;
case IR::Opcode::SetAttribute:
SetAttribute(info, inst.Arg(0).Attribute());
break;
case IR::Opcode::SetFragColor:
info.stores_frag_color[inst.Arg(0).U32()] = true;
break;
case IR::Opcode::SetFragDepth:
info.stores_frag_depth = true;
break;
case IR::Opcode::WorkgroupId: case IR::Opcode::WorkgroupId:
info.uses_workgroup_id = true; info.uses_workgroup_id = true;
break; break;

View file

@ -169,7 +169,7 @@ private:
const size_t num_args{phi.NumArgs()}; const size_t num_args{phi.NumArgs()};
for (size_t arg_index = 0; arg_index < num_args; ++arg_index) { for (size_t arg_index = 0; arg_index < num_args; ++arg_index) {
const IR::Value& op{phi.Arg(arg_index)}; const IR::Value& op{phi.Arg(arg_index)};
if (op == same || op == IR::Value{&phi}) { if (op.Resolve() == same.Resolve() || op == IR::Value{&phi}) {
// Unique value or self-reference // Unique value or self-reference
continue; continue;
} }

View file

@ -0,0 +1,143 @@
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <optional>
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Shader {
enum class OutputTopology : u32 {
PointList = 1,
LineStrip = 6,
TriangleStrip = 7,
};
enum class PixelImap : u8 {
Unused = 0,
Constant = 1,
Perspective = 2,
ScreenLinear = 3,
};
// Documentation in:
// http://download.nvidia.com/open-gpu-doc/Shader-Program-Header/1/Shader-Program-Header.html
struct ProgramHeader {
union {
BitField<0, 5, u32> sph_type;
BitField<5, 5, u32> version;
BitField<10, 4, u32> shader_type;
BitField<14, 1, u32> mrt_enable;
BitField<15, 1, u32> kills_pixels;
BitField<16, 1, u32> does_global_store;
BitField<17, 4, u32> sass_version;
BitField<21, 5, u32> reserved;
BitField<26, 1, u32> does_load_or_store;
BitField<27, 1, u32> does_fp64;
BitField<28, 4, u32> stream_out_mask;
} common0;
union {
BitField<0, 24, u32> shader_local_memory_low_size;
BitField<24, 8, u32> per_patch_attribute_count;
} common1;
union {
BitField<0, 24, u32> shader_local_memory_high_size;
BitField<24, 8, u32> threads_per_input_primitive;
} common2;
union {
BitField<0, 24, u32> shader_local_memory_crs_size;
BitField<24, 4, OutputTopology> output_topology;
BitField<28, 4, u32> reserved;
} common3;
union {
BitField<0, 12, u32> max_output_vertices;
BitField<12, 8, u32> store_req_start; // NOTE: not used by geometry shaders.
BitField<20, 4, u32> reserved;
BitField<24, 8, u32> store_req_end; // NOTE: not used by geometry shaders.
} common4;
union {
struct {
INSERT_PADDING_BYTES_NOINIT(3); // ImapSystemValuesA
INSERT_PADDING_BYTES_NOINIT(1); // ImapSystemValuesB
INSERT_PADDING_BYTES_NOINIT(16); // ImapGenericVector[32]
INSERT_PADDING_BYTES_NOINIT(2); // ImapColor
union {
BitField<0, 8, u16> clip_distances;
BitField<8, 1, u16> point_sprite_s;
BitField<9, 1, u16> point_sprite_t;
BitField<10, 1, u16> fog_coordinate;
BitField<12, 1, u16> tessellation_eval_point_u;
BitField<13, 1, u16> tessellation_eval_point_v;
BitField<14, 1, u16> instance_id;
BitField<15, 1, u16> vertex_id;
};
INSERT_PADDING_BYTES_NOINIT(5); // ImapFixedFncTexture[10]
INSERT_PADDING_BYTES_NOINIT(1); // ImapReserved
INSERT_PADDING_BYTES_NOINIT(3); // OmapSystemValuesA
INSERT_PADDING_BYTES_NOINIT(1); // OmapSystemValuesB
INSERT_PADDING_BYTES_NOINIT(16); // OmapGenericVector[32]
INSERT_PADDING_BYTES_NOINIT(2); // OmapColor
INSERT_PADDING_BYTES_NOINIT(2); // OmapSystemValuesC
INSERT_PADDING_BYTES_NOINIT(5); // OmapFixedFncTexture[10]
INSERT_PADDING_BYTES_NOINIT(1); // OmapReserved
} vtg;
struct {
INSERT_PADDING_BYTES_NOINIT(3); // ImapSystemValuesA
INSERT_PADDING_BYTES_NOINIT(1); // ImapSystemValuesB
union {
BitField<0, 2, PixelImap> x;
BitField<2, 2, PixelImap> y;
BitField<4, 2, PixelImap> z;
BitField<6, 2, PixelImap> w;
u8 raw;
} imap_generic_vector[32];
INSERT_PADDING_BYTES_NOINIT(2); // ImapColor
INSERT_PADDING_BYTES_NOINIT(2); // ImapSystemValuesC
INSERT_PADDING_BYTES_NOINIT(10); // ImapFixedFncTexture[10]
INSERT_PADDING_BYTES_NOINIT(2); // ImapReserved
struct {
u32 target;
union {
BitField<0, 1, u32> sample_mask;
BitField<1, 1, u32> depth;
BitField<2, 30, u32> reserved;
};
} omap;
[[nodiscard]] std::array<bool, 4> EnabledOutputComponents(u32 rt) const noexcept {
const u32 bits{omap.target >> (rt * 4)};
return {(bits & 1) != 0, (bits & 2) != 0, (bits & 4) != 0, (bits & 8) != 0};
}
[[nodiscard]] std::array<PixelImap, 4> GenericInputMap(u32 attribute) const {
const auto& vector{imap_generic_vector[attribute]};
return {vector.x, vector.y, vector.z, vector.w};
}
} ps;
std::array<u32, 0xf> raw;
};
[[nodiscard]] u64 LocalMemorySize() const noexcept {
return (common1.shader_local_memory_low_size |
(common2.shader_local_memory_high_size << 24));
}
};
static_assert(sizeof(ProgramHeader) == 0x50, "Incorrect structure size");
} // namespace Shader

View file

@ -1,28 +0,0 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <vector>
#include "common/common_types.h"
#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/environment.h"
#include "shader_recompiler/frontend/maxwell/control_flow.h"
#include "shader_recompiler/frontend/maxwell/program.h"
#include "shader_recompiler/object_pool.h"
#include "shader_recompiler/recompiler.h"
namespace Shader {
std::pair<Info, std::vector<u32>> RecompileSPIRV(const Profile& profile, Environment& env,
u32 start_address) {
ObjectPool<Maxwell::Flow::Block> flow_block_pool;
ObjectPool<IR::Inst> inst_pool;
ObjectPool<IR::Block> block_pool;
Maxwell::Flow::CFG cfg{env, flow_block_pool, start_address};
IR::Program program{Maxwell::TranslateProgram(inst_pool, block_pool, env, cfg)};
return {std::move(program.info), Backend::SPIRV::EmitSPIRV(profile, env, program)};
}
} // namespace Shader

View file

@ -1,20 +0,0 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <utility>
#include <vector>
#include "common/common_types.h"
#include "shader_recompiler/environment.h"
#include "shader_recompiler/profile.h"
#include "shader_recompiler/shader_info.h"
namespace Shader {
[[nodiscard]] std::pair<Info, std::vector<u32>> RecompileSPIRV(const Profile& profile,
Environment& env, u32 start_address);
} // namespace Shader

View file

@ -56,6 +56,15 @@ struct Info {
bool uses_workgroup_id{}; bool uses_workgroup_id{};
bool uses_local_invocation_id{}; bool uses_local_invocation_id{};
std::array<bool, 32> loads_generics{};
bool loads_position{};
std::array<bool, 8> stores_frag_color{};
bool stores_frag_depth{};
std::array<bool, 32> stores_generics{};
bool stores_position{};
bool uses_fp16{}; bool uses_fp16{};
bool uses_fp64{}; bool uses_fp64{};
bool uses_fp16_denorms_flush{}; bool uses_fp16_denorms_flush{};
@ -68,6 +77,7 @@ struct Info {
bool uses_image_1d{}; bool uses_image_1d{};
bool uses_sampled_1d{}; bool uses_sampled_1d{};
bool uses_sparse_residency{}; bool uses_sparse_residency{};
bool uses_demote_to_helper_invocation{};
IR::Type used_constant_buffer_types{}; IR::Type used_constant_buffer_types{};

View file

@ -0,0 +1,19 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
namespace Shader {
enum class Stage {
Compute,
VertexA,
VertexB,
TessellationControl,
TessellationEval,
Geometry,
Fragment,
};
} // namespace Shader

View file

@ -100,6 +100,7 @@ add_library(video_core STATIC
renderer_vulkan/fixed_pipeline_state.h renderer_vulkan/fixed_pipeline_state.h
renderer_vulkan/maxwell_to_vk.cpp renderer_vulkan/maxwell_to_vk.cpp
renderer_vulkan/maxwell_to_vk.h renderer_vulkan/maxwell_to_vk.h
renderer_vulkan/pipeline_helper.h
renderer_vulkan/renderer_vulkan.h renderer_vulkan/renderer_vulkan.h
renderer_vulkan/renderer_vulkan.cpp renderer_vulkan/renderer_vulkan.cpp
renderer_vulkan/vk_blit_screen.cpp renderer_vulkan/vk_blit_screen.cpp
@ -116,15 +117,18 @@ add_library(video_core STATIC
renderer_vulkan/vk_descriptor_pool.h renderer_vulkan/vk_descriptor_pool.h
renderer_vulkan/vk_fence_manager.cpp renderer_vulkan/vk_fence_manager.cpp
renderer_vulkan/vk_fence_manager.h renderer_vulkan/vk_fence_manager.h
renderer_vulkan/vk_graphics_pipeline.cpp
renderer_vulkan/vk_graphics_pipeline.h
renderer_vulkan/vk_master_semaphore.cpp renderer_vulkan/vk_master_semaphore.cpp
renderer_vulkan/vk_master_semaphore.h renderer_vulkan/vk_master_semaphore.h
renderer_vulkan/vk_pipeline_cache.cpp renderer_vulkan/vk_pipeline_cache.cpp
renderer_vulkan/vk_pipeline_cache.h renderer_vulkan/vk_pipeline_cache.h
renderer_vulkan/vk_pipeline.h
renderer_vulkan/vk_query_cache.cpp renderer_vulkan/vk_query_cache.cpp
renderer_vulkan/vk_query_cache.h renderer_vulkan/vk_query_cache.h
renderer_vulkan/vk_rasterizer.cpp renderer_vulkan/vk_rasterizer.cpp
renderer_vulkan/vk_rasterizer.h renderer_vulkan/vk_rasterizer.h
renderer_vulkan/vk_render_pass_cache.cpp
renderer_vulkan/vk_render_pass_cache.h
renderer_vulkan/vk_resource_pool.cpp renderer_vulkan/vk_resource_pool.cpp
renderer_vulkan/vk_resource_pool.h renderer_vulkan/vk_resource_pool.h
renderer_vulkan/vk_scheduler.cpp renderer_vulkan/vk_scheduler.cpp

View file

@ -72,6 +72,10 @@ void FixedPipelineState::Refresh(Tegra::Engines::Maxwell3D& maxwell3d,
regs.alpha_test_enabled != 0 ? regs.alpha_test_func : Maxwell::ComparisonOp::Always; regs.alpha_test_enabled != 0 ? regs.alpha_test_func : Maxwell::ComparisonOp::Always;
alpha_test_func.Assign(PackComparisonOp(test_func)); alpha_test_func.Assign(PackComparisonOp(test_func));
early_z.Assign(regs.force_early_fragment_tests != 0 ? 1 : 0); early_z.Assign(regs.force_early_fragment_tests != 0 ? 1 : 0);
depth_enabled.Assign(regs.zeta_enable != 0 ? 1 : 0);
depth_format.Assign(static_cast<u32>(regs.zeta.format));
std::ranges::transform(regs.rt, color_formats.begin(),
[](const auto& rt) { return static_cast<u8>(rt.format); });
alpha_test_ref = Common::BitCast<u32>(regs.alpha_test_ref); alpha_test_ref = Common::BitCast<u32>(regs.alpha_test_ref);
point_size = Common::BitCast<u32>(regs.point_size); point_size = Common::BitCast<u32>(regs.point_size);

View file

@ -60,7 +60,7 @@ struct FixedPipelineState {
void Refresh(const Maxwell& regs, size_t index); void Refresh(const Maxwell& regs, size_t index);
constexpr std::array<bool, 4> Mask() const noexcept { std::array<bool, 4> Mask() const noexcept {
return {mask_r != 0, mask_g != 0, mask_b != 0, mask_a != 0}; return {mask_r != 0, mask_g != 0, mask_b != 0, mask_a != 0};
} }
@ -97,11 +97,11 @@ struct FixedPipelineState {
BitField<20, 3, u32> type; BitField<20, 3, u32> type;
BitField<23, 6, u32> size; BitField<23, 6, u32> size;
constexpr Maxwell::VertexAttribute::Type Type() const noexcept { Maxwell::VertexAttribute::Type Type() const noexcept {
return static_cast<Maxwell::VertexAttribute::Type>(type.Value()); return static_cast<Maxwell::VertexAttribute::Type>(type.Value());
} }
constexpr Maxwell::VertexAttribute::Size Size() const noexcept { Maxwell::VertexAttribute::Size Size() const noexcept {
return static_cast<Maxwell::VertexAttribute::Size>(size.Value()); return static_cast<Maxwell::VertexAttribute::Size>(size.Value());
} }
}; };
@ -187,7 +187,10 @@ struct FixedPipelineState {
u32 raw2; u32 raw2;
BitField<0, 3, u32> alpha_test_func; BitField<0, 3, u32> alpha_test_func;
BitField<3, 1, u32> early_z; BitField<3, 1, u32> early_z;
BitField<4, 1, u32> depth_enabled;
BitField<5, 5, u32> depth_format;
}; };
std::array<u8, Maxwell::NumRenderTargets> color_formats;
u32 alpha_test_ref; u32 alpha_test_ref;
u32 point_size; u32 point_size;

View file

@ -741,4 +741,28 @@ VkSamplerReductionMode SamplerReduction(Tegra::Texture::SamplerReduction reducti
return VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT; return VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT;
} }
VkSampleCountFlagBits MsaaMode(Tegra::Texture::MsaaMode msaa_mode) {
switch (msaa_mode) {
case Tegra::Texture::MsaaMode::Msaa1x1:
return VK_SAMPLE_COUNT_1_BIT;
case Tegra::Texture::MsaaMode::Msaa2x1:
case Tegra::Texture::MsaaMode::Msaa2x1_D3D:
return VK_SAMPLE_COUNT_2_BIT;
case Tegra::Texture::MsaaMode::Msaa2x2:
case Tegra::Texture::MsaaMode::Msaa2x2_VC4:
case Tegra::Texture::MsaaMode::Msaa2x2_VC12:
return VK_SAMPLE_COUNT_4_BIT;
case Tegra::Texture::MsaaMode::Msaa4x2:
case Tegra::Texture::MsaaMode::Msaa4x2_D3D:
case Tegra::Texture::MsaaMode::Msaa4x2_VC8:
case Tegra::Texture::MsaaMode::Msaa4x2_VC24:
return VK_SAMPLE_COUNT_8_BIT;
case Tegra::Texture::MsaaMode::Msaa4x4:
return VK_SAMPLE_COUNT_16_BIT;
default:
UNREACHABLE_MSG("Invalid msaa_mode={}", static_cast<int>(msaa_mode));
return VK_SAMPLE_COUNT_1_BIT;
}
}
} // namespace Vulkan::MaxwellToVK } // namespace Vulkan::MaxwellToVK

View file

@ -71,4 +71,6 @@ VkViewportCoordinateSwizzleNV ViewportSwizzle(Maxwell::ViewportSwizzle swizzle);
VkSamplerReductionMode SamplerReduction(Tegra::Texture::SamplerReduction reduction); VkSamplerReductionMode SamplerReduction(Tegra::Texture::SamplerReduction reduction);
VkSampleCountFlagBits MsaaMode(Tegra::Texture::MsaaMode msaa_mode);
} // namespace Vulkan::MaxwellToVK } // namespace Vulkan::MaxwellToVK

View file

@ -0,0 +1,162 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <boost/container/small_vector.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "shader_recompiler/shader_info.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/texture_cache/texture_cache.h"
#include "video_core/texture_cache/types.h"
#include "video_core/textures/texture.h"
namespace Vulkan {
struct TextureHandle {
explicit TextureHandle(u32 data, bool via_header_index) {
[[likely]] if (via_header_index) {
image = data;
sampler = data;
} else {
const Tegra::Texture::TextureHandle handle{data};
image = handle.tic_id;
sampler = via_header_index ? image : handle.tsc_id.Value();
}
}
u32 image;
u32 sampler;
};
struct DescriptorLayoutTuple {
vk::DescriptorSetLayout descriptor_set_layout;
vk::PipelineLayout pipeline_layout;
vk::DescriptorUpdateTemplateKHR descriptor_update_template;
};
class DescriptorLayoutBuilder {
public:
DescriptorLayoutTuple Create(const vk::Device& device) {
DescriptorLayoutTuple result;
if (!bindings.empty()) {
result.descriptor_set_layout = device.CreateDescriptorSetLayout({
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = static_cast<u32>(bindings.size()),
.pBindings = bindings.data(),
});
}
result.pipeline_layout = device.CreatePipelineLayout({
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.setLayoutCount = result.descriptor_set_layout ? 1U : 0U,
.pSetLayouts = bindings.empty() ? nullptr : result.descriptor_set_layout.address(),
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
});
if (!entries.empty()) {
result.descriptor_update_template = device.CreateDescriptorUpdateTemplateKHR({
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO_KHR,
.pNext = nullptr,
.flags = 0,
.descriptorUpdateEntryCount = static_cast<u32>(entries.size()),
.pDescriptorUpdateEntries = entries.data(),
.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR,
.descriptorSetLayout = *result.descriptor_set_layout,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.pipelineLayout = *result.pipeline_layout,
.set = 0,
});
}
return result;
}
void Add(const Shader::Info& info, VkShaderStageFlags stage) {
for ([[maybe_unused]] const auto& desc : info.constant_buffer_descriptors) {
Add(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, stage);
}
for ([[maybe_unused]] const auto& desc : info.storage_buffers_descriptors) {
Add(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, stage);
}
for ([[maybe_unused]] const auto& desc : info.texture_descriptors) {
Add(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, stage);
}
}
private:
void Add(VkDescriptorType type, VkShaderStageFlags stage) {
bindings.push_back({
.binding = binding,
.descriptorType = type,
.descriptorCount = 1,
.stageFlags = stage,
.pImmutableSamplers = nullptr,
});
entries.push_back(VkDescriptorUpdateTemplateEntryKHR{
.dstBinding = binding,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = type,
.offset = offset,
.stride = sizeof(DescriptorUpdateEntry),
});
++binding;
offset += sizeof(DescriptorUpdateEntry);
}
boost::container::small_vector<VkDescriptorSetLayoutBinding, 32> bindings;
boost::container::small_vector<VkDescriptorUpdateTemplateEntryKHR, 32> entries;
u32 binding{};
size_t offset{};
};
inline VideoCommon::ImageViewType CastType(Shader::TextureType type) {
switch (type) {
case Shader::TextureType::Color1D:
case Shader::TextureType::Shadow1D:
return VideoCommon::ImageViewType::e1D;
case Shader::TextureType::ColorArray1D:
case Shader::TextureType::ShadowArray1D:
return VideoCommon::ImageViewType::e1DArray;
case Shader::TextureType::Color2D:
case Shader::TextureType::Shadow2D:
return VideoCommon::ImageViewType::e2D;
case Shader::TextureType::ColorArray2D:
case Shader::TextureType::ShadowArray2D:
return VideoCommon::ImageViewType::e2DArray;
case Shader::TextureType::Color3D:
case Shader::TextureType::Shadow3D:
return VideoCommon::ImageViewType::e3D;
case Shader::TextureType::ColorCube:
case Shader::TextureType::ShadowCube:
return VideoCommon::ImageViewType::Cube;
case Shader::TextureType::ColorArrayCube:
case Shader::TextureType::ShadowArrayCube:
return VideoCommon::ImageViewType::CubeArray;
}
UNREACHABLE_MSG("Invalid texture type {}", type);
return {};
}
inline void PushImageDescriptors(const Shader::Info& info, const VkSampler* samplers,
const ImageId* image_view_ids, TextureCache& texture_cache,
VKUpdateDescriptorQueue& update_descriptor_queue, size_t& index) {
for (const auto& desc : info.texture_descriptors) {
const VkSampler sampler{samplers[index]};
ImageView& image_view{texture_cache.GetImageView(image_view_ids[index])};
const VkImageView vk_image_view{image_view.Handle(CastType(desc.type))};
update_descriptor_queue.AddSampledImage(vk_image_view, sampler);
++index;
}
}
} // namespace Vulkan

View file

@ -6,6 +6,7 @@
#include <boost/container/small_vector.hpp> #include <boost/container/small_vector.hpp>
#include "video_core/renderer_vulkan/pipeline_helper.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h" #include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
@ -17,140 +18,10 @@
namespace Vulkan { namespace Vulkan {
namespace { namespace {
vk::DescriptorSetLayout CreateDescriptorSetLayout(const Device& device, const Shader::Info& info) { DescriptorLayoutTuple CreateLayout(const Device& device, const Shader::Info& info) {
boost::container::small_vector<VkDescriptorSetLayoutBinding, 24> bindings; DescriptorLayoutBuilder builder;
u32 binding{}; builder.Add(info, VK_SHADER_STAGE_COMPUTE_BIT);
for ([[maybe_unused]] const auto& desc : info.constant_buffer_descriptors) { return builder.Create(device.GetLogical());
bindings.push_back({
.binding = binding,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
});
++binding;
}
for ([[maybe_unused]] const auto& desc : info.storage_buffers_descriptors) {
bindings.push_back({
.binding = binding,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
});
++binding;
}
for (const auto& desc : info.texture_descriptors) {
bindings.push_back({
.binding = binding,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
});
++binding;
}
return device.GetLogical().CreateDescriptorSetLayout({
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = static_cast<u32>(bindings.size()),
.pBindings = bindings.data(),
});
}
vk::DescriptorUpdateTemplateKHR CreateDescriptorUpdateTemplate(
const Device& device, const Shader::Info& info, VkDescriptorSetLayout descriptor_set_layout,
VkPipelineLayout pipeline_layout) {
boost::container::small_vector<VkDescriptorUpdateTemplateEntry, 24> entries;
size_t offset{};
u32 binding{};
for ([[maybe_unused]] const auto& desc : info.constant_buffer_descriptors) {
entries.push_back({
.dstBinding = binding,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.offset = offset,
.stride = sizeof(DescriptorUpdateEntry),
});
++binding;
offset += sizeof(DescriptorUpdateEntry);
}
for ([[maybe_unused]] const auto& desc : info.storage_buffers_descriptors) {
entries.push_back({
.dstBinding = binding,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.offset = offset,
.stride = sizeof(DescriptorUpdateEntry),
});
++binding;
offset += sizeof(DescriptorUpdateEntry);
}
for (const auto& desc : info.texture_descriptors) {
entries.push_back({
.dstBinding = binding,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.offset = offset,
.stride = sizeof(DescriptorUpdateEntry),
});
++binding;
offset += sizeof(DescriptorUpdateEntry);
}
return device.GetLogical().CreateDescriptorUpdateTemplateKHR({
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_UPDATE_TEMPLATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.descriptorUpdateEntryCount = static_cast<u32>(entries.size()),
.pDescriptorUpdateEntries = entries.data(),
.templateType = VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET,
.descriptorSetLayout = descriptor_set_layout,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_COMPUTE,
.pipelineLayout = pipeline_layout,
.set = 0,
});
}
struct TextureHandle {
explicit TextureHandle(u32 data, bool via_header_index) {
const Tegra::Texture::TextureHandle handle{data};
image = handle.tic_id;
sampler = via_header_index ? image : handle.tsc_id.Value();
}
u32 image;
u32 sampler;
};
VideoCommon::ImageViewType CastType(Shader::TextureType type) {
switch (type) {
case Shader::TextureType::Color1D:
case Shader::TextureType::Shadow1D:
return VideoCommon::ImageViewType::e1D;
case Shader::TextureType::ColorArray1D:
case Shader::TextureType::ShadowArray1D:
return VideoCommon::ImageViewType::e1DArray;
case Shader::TextureType::Color2D:
case Shader::TextureType::Shadow2D:
return VideoCommon::ImageViewType::e2D;
case Shader::TextureType::ColorArray2D:
case Shader::TextureType::ShadowArray2D:
return VideoCommon::ImageViewType::e2DArray;
case Shader::TextureType::Color3D:
case Shader::TextureType::Shadow3D:
return VideoCommon::ImageViewType::e3D;
case Shader::TextureType::ColorCube:
case Shader::TextureType::ShadowCube:
return VideoCommon::ImageViewType::Cube;
case Shader::TextureType::ColorArrayCube:
case Shader::TextureType::ShadowArrayCube:
return VideoCommon::ImageViewType::CubeArray;
}
UNREACHABLE_MSG("Invalid texture type {}", type);
} }
} // Anonymous namespace } // Anonymous namespace
@ -158,37 +29,31 @@ ComputePipeline::ComputePipeline(const Device& device, VKDescriptorPool& descrip
VKUpdateDescriptorQueue& update_descriptor_queue_, VKUpdateDescriptorQueue& update_descriptor_queue_,
const Shader::Info& info_, vk::ShaderModule spv_module_) const Shader::Info& info_, vk::ShaderModule spv_module_)
: update_descriptor_queue{&update_descriptor_queue_}, info{info_}, : update_descriptor_queue{&update_descriptor_queue_}, info{info_},
spv_module(std::move(spv_module_)), spv_module(std::move(spv_module_)) {
descriptor_set_layout(CreateDescriptorSetLayout(device, info)), DescriptorLayoutTuple tuple{CreateLayout(device, info)};
descriptor_allocator(descriptor_pool, *descriptor_set_layout), descriptor_set_layout = std::move(tuple.descriptor_set_layout);
pipeline_layout{device.GetLogical().CreatePipelineLayout({ pipeline_layout = std::move(tuple.pipeline_layout);
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, descriptor_update_template = std::move(tuple.descriptor_update_template);
.pNext = nullptr, descriptor_allocator = DescriptorAllocator(descriptor_pool, *descriptor_set_layout);
.flags = 0,
.setLayoutCount = 1, pipeline = device.GetLogical().CreateComputePipeline({
.pSetLayouts = descriptor_set_layout.address(), .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.pushConstantRangeCount = 0, .pNext = nullptr,
.pPushConstantRanges = nullptr, .flags = 0,
})}, .stage{
descriptor_update_template{ .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
CreateDescriptorUpdateTemplate(device, info, *descriptor_set_layout, *pipeline_layout)}, .pNext = nullptr,
pipeline{device.GetLogical().CreateComputePipeline({ .flags = 0,
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO, .stage = VK_SHADER_STAGE_COMPUTE_BIT,
.pNext = nullptr, .module = *spv_module,
.flags = 0, .pName = "main",
.stage{ .pSpecializationInfo = nullptr,
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, },
.pNext = nullptr, .layout = *pipeline_layout,
.flags = 0, .basePipelineHandle = 0,
.stage = VK_SHADER_STAGE_COMPUTE_BIT, .basePipelineIndex = 0,
.module = *spv_module, });
.pName = "main", }
.pSpecializationInfo = nullptr,
},
.layout = *pipeline_layout,
.basePipelineHandle = 0,
.basePipelineIndex = 0,
})} {}
void ComputePipeline::ConfigureBufferCache(BufferCache& buffer_cache) { void ComputePipeline::ConfigureBufferCache(BufferCache& buffer_cache) {
buffer_cache.SetEnabledComputeUniformBuffers(info.constant_buffer_mask); buffer_cache.SetEnabledComputeUniformBuffers(info.constant_buffer_mask);
@ -211,7 +76,7 @@ void ComputePipeline::ConfigureTextureCache(Tegra::Engines::KeplerCompute& keple
static constexpr size_t max_elements = 64; static constexpr size_t max_elements = 64;
std::array<ImageId, max_elements> image_view_ids; std::array<ImageId, max_elements> image_view_ids;
boost::container::static_vector<u32, max_elements> image_view_indices; boost::container::static_vector<u32, max_elements> image_view_indices;
boost::container::static_vector<VkSampler, max_elements> sampler_handles; boost::container::static_vector<VkSampler, max_elements> samplers;
const auto& launch_desc{kepler_compute.launch_description}; const auto& launch_desc{kepler_compute.launch_description};
const auto& cbufs{launch_desc.const_buffer_config}; const auto& cbufs{launch_desc.const_buffer_config};
@ -228,20 +93,14 @@ void ComputePipeline::ConfigureTextureCache(Tegra::Engines::KeplerCompute& keple
image_view_indices.push_back(handle.image); image_view_indices.push_back(handle.image);
Sampler* const sampler = texture_cache.GetComputeSampler(handle.sampler); Sampler* const sampler = texture_cache.GetComputeSampler(handle.sampler);
sampler_handles.push_back(sampler->Handle()); samplers.push_back(sampler->Handle());
} }
const std::span indices_span(image_view_indices.data(), image_view_indices.size()); const std::span indices_span(image_view_indices.data(), image_view_indices.size());
texture_cache.FillComputeImageViews(indices_span, image_view_ids); texture_cache.FillComputeImageViews(indices_span, image_view_ids);
size_t index{}; size_t index{};
for (const auto& desc : info.texture_descriptors) { PushImageDescriptors(info, samplers.data(), image_view_ids.data(), texture_cache,
const VkSampler vk_sampler{sampler_handles[index]}; *update_descriptor_queue, index);
ImageView& image_view{texture_cache.GetImageView(image_view_ids[index])};
const VkImageView vk_image_view{image_view.Handle(CastType(desc.type))};
update_descriptor_queue->AddSampledImage(vk_image_view, vk_sampler);
++index;
}
} }
VkDescriptorSet ComputePipeline::UpdateDescriptorSet() { VkDescriptorSet ComputePipeline::UpdateDescriptorSet() {

View file

@ -9,7 +9,6 @@
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h" #include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h" #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_pipeline.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h" #include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -18,7 +17,7 @@ namespace Vulkan {
class Device; class Device;
class ComputePipeline : public Pipeline { class ComputePipeline {
public: public:
explicit ComputePipeline() = default; explicit ComputePipeline() = default;
explicit ComputePipeline(const Device& device, VKDescriptorPool& descriptor_pool, explicit ComputePipeline(const Device& device, VKDescriptorPool& descriptor_pool,

View file

@ -0,0 +1,445 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <span>
#include <boost/container/small_vector.hpp>
#include <boost/container/static_vector.hpp>
#include "common/bit_field.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/pipeline_helper.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "video_core/renderer_vulkan/vk_render_pass_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/vulkan_common/vulkan_device.h"
namespace Vulkan {
namespace {
using boost::container::small_vector;
using boost::container::static_vector;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::PixelFormatFromDepthFormat;
using VideoCore::Surface::PixelFormatFromRenderTargetFormat;
DescriptorLayoutTuple CreateLayout(const Device& device, std::span<const Shader::Info> infos) {
DescriptorLayoutBuilder builder;
for (size_t index = 0; index < infos.size(); ++index) {
static constexpr std::array stages{
VK_SHADER_STAGE_VERTEX_BIT,
VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT,
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
VK_SHADER_STAGE_GEOMETRY_BIT,
VK_SHADER_STAGE_FRAGMENT_BIT,
};
builder.Add(infos[index], stages.at(index));
}
return builder.Create(device.GetLogical());
}
template <class StencilFace>
VkStencilOpState GetStencilFaceState(const StencilFace& face) {
return {
.failOp = MaxwellToVK::StencilOp(face.ActionStencilFail()),
.passOp = MaxwellToVK::StencilOp(face.ActionDepthPass()),
.depthFailOp = MaxwellToVK::StencilOp(face.ActionDepthFail()),
.compareOp = MaxwellToVK::ComparisonOp(face.TestFunc()),
.compareMask = 0,
.writeMask = 0,
.reference = 0,
};
}
bool SupportsPrimitiveRestart(VkPrimitiveTopology topology) {
static constexpr std::array unsupported_topologies{
VK_PRIMITIVE_TOPOLOGY_POINT_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,
// VK_PRIMITIVE_TOPOLOGY_QUAD_LIST_EXT,
};
return std::ranges::find(unsupported_topologies, topology) == unsupported_topologies.end();
}
VkViewportSwizzleNV UnpackViewportSwizzle(u16 swizzle) {
union Swizzle {
u32 raw;
BitField<0, 3, Maxwell::ViewportSwizzle> x;
BitField<4, 3, Maxwell::ViewportSwizzle> y;
BitField<8, 3, Maxwell::ViewportSwizzle> z;
BitField<12, 3, Maxwell::ViewportSwizzle> w;
};
const Swizzle unpacked{swizzle};
return VkViewportSwizzleNV{
.x = MaxwellToVK::ViewportSwizzle(unpacked.x),
.y = MaxwellToVK::ViewportSwizzle(unpacked.y),
.z = MaxwellToVK::ViewportSwizzle(unpacked.z),
.w = MaxwellToVK::ViewportSwizzle(unpacked.w),
};
}
PixelFormat DecodeFormat(u8 encoded_format) {
const auto format{static_cast<Tegra::RenderTargetFormat>(encoded_format)};
if (format == Tegra::RenderTargetFormat::NONE) {
return PixelFormat::Invalid;
}
return PixelFormatFromRenderTargetFormat(format);
}
RenderPassKey MakeRenderPassKey(const FixedPipelineState& state) {
RenderPassKey key;
std::ranges::transform(state.color_formats, key.color_formats.begin(), DecodeFormat);
if (state.depth_enabled != 0) {
const auto depth_format{static_cast<Tegra::DepthFormat>(state.depth_format.Value())};
key.depth_format = PixelFormatFromDepthFormat(depth_format);
} else {
key.depth_format = PixelFormat::Invalid;
}
key.samples = MaxwellToVK::MsaaMode(state.msaa_mode);
return key;
}
} // Anonymous namespace
GraphicsPipeline::GraphicsPipeline(Tegra::Engines::Maxwell3D& maxwell3d_,
Tegra::MemoryManager& gpu_memory_, VKScheduler& scheduler_,
BufferCache& buffer_cache_, TextureCache& texture_cache_,
const Device& device, VKDescriptorPool& descriptor_pool,
VKUpdateDescriptorQueue& update_descriptor_queue_,
RenderPassCache& render_pass_cache,
const FixedPipelineState& state,
std::array<vk::ShaderModule, NUM_STAGES> stages,
const std::array<const Shader::Info*, NUM_STAGES>& infos)
: maxwell3d{&maxwell3d_}, gpu_memory{&gpu_memory_}, texture_cache{&texture_cache_},
buffer_cache{&buffer_cache_}, scheduler{&scheduler_},
update_descriptor_queue{&update_descriptor_queue_}, spv_modules{std::move(stages)} {
std::ranges::transform(infos, stage_infos.begin(),
[](const Shader::Info* info) { return info ? *info : Shader::Info{}; });
DescriptorLayoutTuple tuple{CreateLayout(device, stage_infos)};
descriptor_set_layout = std::move(tuple.descriptor_set_layout);
pipeline_layout = std::move(tuple.pipeline_layout);
descriptor_update_template = std::move(tuple.descriptor_update_template);
descriptor_allocator = DescriptorAllocator(descriptor_pool, *descriptor_set_layout);
const VkRenderPass render_pass{render_pass_cache.Get(MakeRenderPassKey(state))};
MakePipeline(device, state, render_pass);
}
void GraphicsPipeline::Configure(bool is_indexed) {
static constexpr size_t max_images_elements = 64;
std::array<ImageId, max_images_elements> image_view_ids;
static_vector<u32, max_images_elements> image_view_indices;
static_vector<VkSampler, max_images_elements> samplers;
texture_cache->SynchronizeGraphicsDescriptors();
texture_cache->UpdateRenderTargets(false);
const auto& regs{maxwell3d->regs};
const bool via_header_index{regs.sampler_index == Maxwell::SamplerIndex::ViaHeaderIndex};
for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
const Shader::Info& info{stage_infos[stage]};
buffer_cache->SetEnabledUniformBuffers(stage, info.constant_buffer_mask);
buffer_cache->UnbindGraphicsStorageBuffers(stage);
size_t index{};
for (const auto& desc : info.storage_buffers_descriptors) {
ASSERT(desc.count == 1);
buffer_cache->BindGraphicsStorageBuffer(stage, index, desc.cbuf_index, desc.cbuf_offset,
true);
++index;
}
const auto& cbufs{maxwell3d->state.shader_stages[stage].const_buffers};
for (const auto& desc : info.texture_descriptors) {
const u32 cbuf_index{desc.cbuf_index};
const u32 cbuf_offset{desc.cbuf_offset};
ASSERT(cbufs[cbuf_index].enabled);
const GPUVAddr addr{cbufs[cbuf_index].address + cbuf_offset};
const u32 raw_handle{gpu_memory->Read<u32>(addr)};
const TextureHandle handle(raw_handle, via_header_index);
image_view_indices.push_back(handle.image);
Sampler* const sampler{texture_cache->GetGraphicsSampler(handle.sampler)};
samplers.push_back(sampler->Handle());
}
}
const std::span indices_span(image_view_indices.data(), image_view_indices.size());
buffer_cache->UpdateGraphicsBuffers(is_indexed);
texture_cache->FillGraphicsImageViews(indices_span, image_view_ids);
buffer_cache->BindHostGeometryBuffers(is_indexed);
size_t index{};
for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
buffer_cache->BindHostStageBuffers(stage);
PushImageDescriptors(stage_infos[stage], samplers.data(), image_view_ids.data(),
*texture_cache, *update_descriptor_queue, index);
}
const VkDescriptorSet descriptor_set{descriptor_allocator.Commit()};
update_descriptor_queue->Send(*descriptor_update_template, descriptor_set);
scheduler->BindGraphicsPipeline(*pipeline);
scheduler->Record([descriptor_set, layout = *pipeline_layout](vk::CommandBuffer cmdbuf) {
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, descriptor_set,
nullptr);
});
}
void GraphicsPipeline::MakePipeline(const Device& device, const FixedPipelineState& state,
VkRenderPass render_pass) {
FixedPipelineState::DynamicState dynamic{};
if (!device.IsExtExtendedDynamicStateSupported()) {
dynamic = state.dynamic_state;
}
static_vector<VkVertexInputBindingDescription, 32> vertex_bindings;
static_vector<VkVertexInputBindingDivisorDescriptionEXT, 32> vertex_binding_divisors;
for (size_t index = 0; index < Maxwell::NumVertexArrays; ++index) {
const bool instanced = state.binding_divisors[index] != 0;
const auto rate = instanced ? VK_VERTEX_INPUT_RATE_INSTANCE : VK_VERTEX_INPUT_RATE_VERTEX;
vertex_bindings.push_back({
.binding = static_cast<u32>(index),
.stride = dynamic.vertex_strides[index],
.inputRate = rate,
});
if (instanced) {
vertex_binding_divisors.push_back({
.binding = static_cast<u32>(index),
.divisor = state.binding_divisors[index],
});
}
}
static_vector<VkVertexInputAttributeDescription, 32> vertex_attributes;
const auto& input_attributes = stage_infos[0].loads_generics;
for (size_t index = 0; index < state.attributes.size(); ++index) {
const auto& attribute = state.attributes[index];
if (!attribute.enabled || !input_attributes[index]) {
continue;
}
vertex_attributes.push_back({
.location = static_cast<u32>(index),
.binding = attribute.buffer,
.format = MaxwellToVK::VertexFormat(attribute.Type(), attribute.Size()),
.offset = attribute.offset,
});
}
VkPipelineVertexInputStateCreateInfo vertex_input_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.vertexBindingDescriptionCount = static_cast<u32>(vertex_bindings.size()),
.pVertexBindingDescriptions = vertex_bindings.data(),
.vertexAttributeDescriptionCount = static_cast<u32>(vertex_attributes.size()),
.pVertexAttributeDescriptions = vertex_attributes.data(),
};
const VkPipelineVertexInputDivisorStateCreateInfoEXT input_divisor_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT,
.pNext = nullptr,
.vertexBindingDivisorCount = static_cast<u32>(vertex_binding_divisors.size()),
.pVertexBindingDivisors = vertex_binding_divisors.data(),
};
if (!vertex_binding_divisors.empty()) {
vertex_input_ci.pNext = &input_divisor_ci;
}
const auto input_assembly_topology = MaxwellToVK::PrimitiveTopology(device, state.topology);
const VkPipelineInputAssemblyStateCreateInfo input_assembly_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.topology = MaxwellToVK::PrimitiveTopology(device, state.topology),
.primitiveRestartEnable = state.primitive_restart_enable != 0 &&
SupportsPrimitiveRestart(input_assembly_topology),
};
const VkPipelineTessellationStateCreateInfo tessellation_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.patchControlPoints = state.patch_control_points_minus_one.Value() + 1,
};
VkPipelineViewportStateCreateInfo viewport_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.viewportCount = Maxwell::NumViewports,
.pViewports = nullptr,
.scissorCount = Maxwell::NumViewports,
.pScissors = nullptr,
};
std::array<VkViewportSwizzleNV, Maxwell::NumViewports> swizzles;
std::ranges::transform(state.viewport_swizzles, swizzles.begin(), UnpackViewportSwizzle);
VkPipelineViewportSwizzleStateCreateInfoNV swizzle_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SWIZZLE_STATE_CREATE_INFO_NV,
.pNext = nullptr,
.flags = 0,
.viewportCount = Maxwell::NumViewports,
.pViewportSwizzles = swizzles.data(),
};
if (device.IsNvViewportSwizzleSupported()) {
viewport_ci.pNext = &swizzle_ci;
}
const VkPipelineRasterizationStateCreateInfo rasterization_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.depthClampEnable =
static_cast<VkBool32>(state.depth_clamp_disabled == 0 ? VK_TRUE : VK_FALSE),
.rasterizerDiscardEnable =
static_cast<VkBool32>(state.rasterize_enable == 0 ? VK_TRUE : VK_FALSE),
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = static_cast<VkCullModeFlags>(
dynamic.cull_enable ? MaxwellToVK::CullFace(dynamic.CullFace()) : VK_CULL_MODE_NONE),
.frontFace = MaxwellToVK::FrontFace(dynamic.FrontFace()),
.depthBiasEnable = state.depth_bias_enable,
.depthBiasConstantFactor = 0.0f,
.depthBiasClamp = 0.0f,
.depthBiasSlopeFactor = 0.0f,
.lineWidth = 1.0f,
};
const VkPipelineMultisampleStateCreateInfo multisample_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.rasterizationSamples = MaxwellToVK::MsaaMode(state.msaa_mode),
.sampleShadingEnable = VK_FALSE,
.minSampleShading = 0.0f,
.pSampleMask = nullptr,
.alphaToCoverageEnable = VK_FALSE,
.alphaToOneEnable = VK_FALSE,
};
const VkPipelineDepthStencilStateCreateInfo depth_stencil_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.depthTestEnable = dynamic.depth_test_enable,
.depthWriteEnable = dynamic.depth_write_enable,
.depthCompareOp = dynamic.depth_test_enable
? MaxwellToVK::ComparisonOp(dynamic.DepthTestFunc())
: VK_COMPARE_OP_ALWAYS,
.depthBoundsTestEnable = dynamic.depth_bounds_enable,
.stencilTestEnable = dynamic.stencil_enable,
.front = GetStencilFaceState(dynamic.front),
.back = GetStencilFaceState(dynamic.back),
.minDepthBounds = 0.0f,
.maxDepthBounds = 0.0f,
};
static_vector<VkPipelineColorBlendAttachmentState, Maxwell::NumRenderTargets> cb_attachments;
for (size_t index = 0; index < Maxwell::NumRenderTargets; ++index) {
static constexpr std::array mask_table{
VK_COLOR_COMPONENT_R_BIT,
VK_COLOR_COMPONENT_G_BIT,
VK_COLOR_COMPONENT_B_BIT,
VK_COLOR_COMPONENT_A_BIT,
};
const auto format{static_cast<Tegra::RenderTargetFormat>(state.color_formats[index])};
if (format == Tegra::RenderTargetFormat::NONE) {
continue;
}
const auto& blend{state.attachments[index]};
const std::array mask{blend.Mask()};
VkColorComponentFlags write_mask{};
for (size_t i = 0; i < mask_table.size(); ++i) {
write_mask |= mask[i] ? mask_table[i] : 0;
}
cb_attachments.push_back({
.blendEnable = blend.enable != 0,
.srcColorBlendFactor = MaxwellToVK::BlendFactor(blend.SourceRGBFactor()),
.dstColorBlendFactor = MaxwellToVK::BlendFactor(blend.DestRGBFactor()),
.colorBlendOp = MaxwellToVK::BlendEquation(blend.EquationRGB()),
.srcAlphaBlendFactor = MaxwellToVK::BlendFactor(blend.SourceAlphaFactor()),
.dstAlphaBlendFactor = MaxwellToVK::BlendFactor(blend.DestAlphaFactor()),
.alphaBlendOp = MaxwellToVK::BlendEquation(blend.EquationAlpha()),
.colorWriteMask = write_mask,
});
}
const VkPipelineColorBlendStateCreateInfo color_blend_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.logicOpEnable = VK_FALSE,
.logicOp = VK_LOGIC_OP_COPY,
.attachmentCount = static_cast<u32>(cb_attachments.size()),
.pAttachments = cb_attachments.data(),
.blendConstants = {},
};
static_vector<VkDynamicState, 17> dynamic_states{
VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE,
};
if (device.IsExtExtendedDynamicStateSupported()) {
static constexpr std::array extended{
VK_DYNAMIC_STATE_CULL_MODE_EXT,
VK_DYNAMIC_STATE_FRONT_FACE_EXT,
VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT,
VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT,
VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT,
VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT,
VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT,
VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT,
VK_DYNAMIC_STATE_STENCIL_OP_EXT,
};
dynamic_states.insert(dynamic_states.end(), extended.begin(), extended.end());
}
const VkPipelineDynamicStateCreateInfo dynamic_state_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.dynamicStateCount = static_cast<u32>(dynamic_states.size()),
.pDynamicStates = dynamic_states.data(),
};
const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT subgroup_size_ci{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT,
.pNext = nullptr,
.requiredSubgroupSize = GuestWarpSize,
};
static_vector<VkPipelineShaderStageCreateInfo, 5> shader_stages;
for (size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
if (!spv_modules[stage]) {
continue;
}
[[maybe_unused]] auto& stage_ci = shader_stages.emplace_back(VkPipelineShaderStageCreateInfo{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stage = MaxwellToVK::ShaderStage(static_cast<Tegra::Engines::ShaderType>(stage)),
.module = *spv_modules[stage],
.pName = "main",
.pSpecializationInfo = nullptr,
});
/*
if (program[stage]->entries.uses_warps && device.IsGuestWarpSizeSupported(stage_ci.stage)) {
stage_ci.pNext = &subgroup_size_ci;
}
*/
}
pipeline = device.GetLogical().CreateGraphicsPipeline({
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.stageCount = static_cast<u32>(shader_stages.size()),
.pStages = shader_stages.data(),
.pVertexInputState = &vertex_input_ci,
.pInputAssemblyState = &input_assembly_ci,
.pTessellationState = &tessellation_ci,
.pViewportState = &viewport_ci,
.pRasterizationState = &rasterization_ci,
.pMultisampleState = &multisample_ci,
.pDepthStencilState = &depth_stencil_ci,
.pColorBlendState = &color_blend_ci,
.pDynamicState = &dynamic_state_ci,
.layout = *pipeline_layout,
.renderPass = render_pass,
.subpass = 0,
.basePipelineHandle = nullptr,
.basePipelineIndex = 0,
});
}
} // namespace Vulkan

View file

@ -0,0 +1,66 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "shader_recompiler/shader_info.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
class Device;
class RenderPassCache;
class VKScheduler;
class VKUpdateDescriptorQueue;
class GraphicsPipeline {
static constexpr size_t NUM_STAGES = Tegra::Engines::Maxwell3D::Regs::MaxShaderStage;
public:
explicit GraphicsPipeline() = default;
explicit GraphicsPipeline(Tegra::Engines::Maxwell3D& maxwell3d,
Tegra::MemoryManager& gpu_memory, VKScheduler& scheduler,
BufferCache& buffer_cache,
TextureCache& texture_cache, const Device& device, VKDescriptorPool& descriptor_pool,
VKUpdateDescriptorQueue& update_descriptor_queue,
RenderPassCache& render_pass_cache, const FixedPipelineState& state,
std::array<vk::ShaderModule, NUM_STAGES> stages,
const std::array<const Shader::Info*, NUM_STAGES>& infos);
void Configure(bool is_indexed);
GraphicsPipeline& operator=(GraphicsPipeline&&) noexcept = default;
GraphicsPipeline(GraphicsPipeline&&) noexcept = default;
GraphicsPipeline& operator=(const GraphicsPipeline&) = delete;
GraphicsPipeline(const GraphicsPipeline&) = delete;
private:
void MakePipeline(const Device& device, const FixedPipelineState& state,
VkRenderPass render_pass);
Tegra::Engines::Maxwell3D* maxwell3d{};
Tegra::MemoryManager* gpu_memory{};
TextureCache* texture_cache{};
BufferCache* buffer_cache{};
VKScheduler* scheduler{};
VKUpdateDescriptorQueue* update_descriptor_queue{};
std::array<vk::ShaderModule, NUM_STAGES> spv_modules;
std::array<Shader::Info, NUM_STAGES> stage_infos;
vk::DescriptorSetLayout descriptor_set_layout;
DescriptorAllocator descriptor_allocator;
vk::PipelineLayout pipeline_layout;
vk::DescriptorUpdateTemplateKHR descriptor_update_template;
vk::Pipeline pipeline;
};
} // namespace Vulkan

View file

@ -1,36 +0,0 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
class Pipeline {
public:
/// Add a reference count to the pipeline
void AddRef() noexcept {
++ref_count;
}
[[nodiscard]] bool RemoveRef() noexcept {
--ref_count;
return ref_count == 0;
}
[[nodiscard]] u64 UsageTick() const noexcept {
return usage_tick;
}
protected:
u64 usage_tick{};
private:
size_t ref_count{};
};
} // namespace Vulkan

View file

@ -12,8 +12,11 @@
#include "common/microprofile.h" #include "common/microprofile.h"
#include "core/core.h" #include "core/core.h"
#include "core/memory.h" #include "core/memory.h"
#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/environment.h" #include "shader_recompiler/environment.h"
#include "shader_recompiler/recompiler.h" #include "shader_recompiler/frontend/maxwell/control_flow.h"
#include "shader_recompiler/frontend/maxwell/program.h"
#include "shader_recompiler/program_header.h"
#include "video_core/engines/kepler_compute.h" #include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h" #include "video_core/memory_manager.h"
@ -34,18 +37,18 @@
namespace Vulkan { namespace Vulkan {
MICROPROFILE_DECLARE(Vulkan_PipelineCache); MICROPROFILE_DECLARE(Vulkan_PipelineCache);
using Tegra::Engines::ShaderType;
namespace { namespace {
class Environment final : public Shader::Environment { using Shader::Backend::SPIRV::EmitSPIRV;
class GenericEnvironment : public Shader::Environment {
public: public:
explicit Environment(Tegra::Engines::KeplerCompute& kepler_compute_, explicit GenericEnvironment() = default;
Tegra::MemoryManager& gpu_memory_, GPUVAddr program_base_) explicit GenericEnvironment(Tegra::MemoryManager& gpu_memory_, GPUVAddr program_base_)
: kepler_compute{kepler_compute_}, gpu_memory{gpu_memory_}, program_base{program_base_} {} : gpu_memory{&gpu_memory_}, program_base{program_base_} {}
~Environment() override = default; ~GenericEnvironment() override = default;
[[nodiscard]] std::optional<u128> Analyze(u32 start_address) { std::optional<u128> Analyze(u32 start_address) {
const std::optional<u64> size{TryFindSize(start_address)}; const std::optional<u64> size{TryFindSize(start_address)};
if (!size) { if (!size) {
return std::nullopt; return std::nullopt;
@ -55,52 +58,47 @@ public:
return Common::CityHash128(reinterpret_cast<const char*>(code.data()), code.size()); return Common::CityHash128(reinterpret_cast<const char*>(code.data()), code.size());
} }
[[nodiscard]] size_t ShaderSize() const noexcept { [[nodiscard]] size_t CachedSize() const noexcept {
return cached_highest - cached_lowest + INST_SIZE;
}
[[nodiscard]] size_t ReadSize() const noexcept {
return read_highest - read_lowest + INST_SIZE; return read_highest - read_lowest + INST_SIZE;
} }
[[nodiscard]] u128 ComputeHash() const { [[nodiscard]] u128 CalculateHash() const {
const size_t size{ShaderSize()}; const size_t size{ReadSize()};
auto data = std::make_unique<u64[]>(size); auto data = std::make_unique<u64[]>(size);
gpu_memory.ReadBlock(program_base + read_lowest, data.get(), size); gpu_memory->ReadBlock(program_base + read_lowest, data.get(), size);
return Common::CityHash128(reinterpret_cast<const char*>(data.get()), size); return Common::CityHash128(reinterpret_cast<const char*>(data.get()), size);
} }
u64 ReadInstruction(u32 address) override { u64 ReadInstruction(u32 address) final {
read_lowest = std::min(read_lowest, address); read_lowest = std::min(read_lowest, address);
read_highest = std::max(read_highest, address); read_highest = std::max(read_highest, address);
if (address >= cached_lowest && address < cached_highest) { if (address >= cached_lowest && address < cached_highest) {
return code[address / INST_SIZE]; return code[address / INST_SIZE];
} }
return gpu_memory.Read<u64>(program_base + address); return gpu_memory->Read<u64>(program_base + address);
} }
u32 TextureBoundBuffer() override { protected:
return kepler_compute.regs.tex_cb_index;
}
std::array<u32, 3> WorkgroupSize() override {
const auto& qmd{kepler_compute.launch_description};
return {qmd.block_dim_x, qmd.block_dim_y, qmd.block_dim_z};
}
private:
static constexpr size_t INST_SIZE = sizeof(u64); static constexpr size_t INST_SIZE = sizeof(u64);
static constexpr size_t BLOCK_SIZE = 0x1000;
static constexpr size_t MAXIMUM_SIZE = 0x100000;
static constexpr u64 SELF_BRANCH_A = 0xE2400FFFFF87000FULL; std::optional<u64> TryFindSize(GPUVAddr guest_addr) {
static constexpr u64 SELF_BRANCH_B = 0xE2400FFFFF07000FULL; constexpr size_t BLOCK_SIZE = 0x1000;
constexpr size_t MAXIMUM_SIZE = 0x100000;
constexpr u64 SELF_BRANCH_A = 0xE2400FFFFF87000FULL;
constexpr u64 SELF_BRANCH_B = 0xE2400FFFFF07000FULL;
std::optional<u64> TryFindSize(u32 start_address) {
GPUVAddr guest_addr = program_base + start_address;
size_t offset = 0; size_t offset = 0;
size_t size = BLOCK_SIZE; size_t size = BLOCK_SIZE;
while (size <= MAXIMUM_SIZE) { while (size <= MAXIMUM_SIZE) {
code.resize(size / INST_SIZE); code.resize(size / INST_SIZE);
u64* const data = code.data() + offset / INST_SIZE; u64* const data = code.data() + offset / INST_SIZE;
gpu_memory.ReadBlock(guest_addr, data, BLOCK_SIZE); gpu_memory->ReadBlock(guest_addr, data, BLOCK_SIZE);
for (size_t i = 0; i < BLOCK_SIZE; i += INST_SIZE) { for (size_t i = 0; i < BLOCK_SIZE; i += INST_SIZE) {
const u64 inst = data[i / INST_SIZE]; const u64 inst = data[i / INST_SIZE];
if (inst == SELF_BRANCH_A || inst == SELF_BRANCH_B) { if (inst == SELF_BRANCH_A || inst == SELF_BRANCH_B) {
@ -114,17 +112,87 @@ private:
return std::nullopt; return std::nullopt;
} }
Tegra::Engines::KeplerCompute& kepler_compute; Tegra::MemoryManager* gpu_memory{};
Tegra::MemoryManager& gpu_memory; GPUVAddr program_base{};
GPUVAddr program_base;
u32 read_lowest = 0;
u32 read_highest = 0;
std::vector<u64> code; std::vector<u64> code;
u32 read_lowest = std::numeric_limits<u32>::max();
u32 read_highest = 0;
u32 cached_lowest = std::numeric_limits<u32>::max(); u32 cached_lowest = std::numeric_limits<u32>::max();
u32 cached_highest = 0; u32 cached_highest = 0;
}; };
class GraphicsEnvironment final : public GenericEnvironment {
public:
explicit GraphicsEnvironment() = default;
explicit GraphicsEnvironment(Tegra::Engines::Maxwell3D& maxwell3d_,
Tegra::MemoryManager& gpu_memory_, Maxwell::ShaderProgram program,
GPUVAddr program_base_, u32 start_offset)
: GenericEnvironment{gpu_memory_, program_base_}, maxwell3d{&maxwell3d_} {
gpu_memory->ReadBlock(program_base + start_offset, &sph, sizeof(sph));
switch (program) {
case Maxwell::ShaderProgram::VertexA:
stage = Shader::Stage::VertexA;
break;
case Maxwell::ShaderProgram::VertexB:
stage = Shader::Stage::VertexB;
break;
case Maxwell::ShaderProgram::TesselationControl:
stage = Shader::Stage::TessellationControl;
break;
case Maxwell::ShaderProgram::TesselationEval:
stage = Shader::Stage::TessellationEval;
break;
case Maxwell::ShaderProgram::Geometry:
stage = Shader::Stage::Geometry;
break;
case Maxwell::ShaderProgram::Fragment:
stage = Shader::Stage::Fragment;
break;
default:
UNREACHABLE_MSG("Invalid program={}", program);
}
}
~GraphicsEnvironment() override = default;
u32 TextureBoundBuffer() override {
return maxwell3d->regs.tex_cb_index;
}
std::array<u32, 3> WorkgroupSize() override {
throw Shader::LogicError("Requesting workgroup size in a graphics stage");
}
private:
Tegra::Engines::Maxwell3D* maxwell3d{};
};
class ComputeEnvironment final : public GenericEnvironment {
public:
explicit ComputeEnvironment() = default;
explicit ComputeEnvironment(Tegra::Engines::KeplerCompute& kepler_compute_,
Tegra::MemoryManager& gpu_memory_, GPUVAddr program_base_)
: GenericEnvironment{gpu_memory_, program_base_}, kepler_compute{&kepler_compute_} {
stage = Shader::Stage::Compute;
}
~ComputeEnvironment() override = default;
u32 TextureBoundBuffer() override {
return kepler_compute->regs.tex_cb_index;
}
std::array<u32, 3> WorkgroupSize() override {
const auto& qmd{kepler_compute->launch_description};
return {qmd.block_dim_x, qmd.block_dim_y, qmd.block_dim_z};
}
private:
Tegra::Engines::KeplerCompute* kepler_compute{};
};
} // Anonymous namespace } // Anonymous namespace
size_t ComputePipelineCacheKey::Hash() const noexcept { size_t ComputePipelineCacheKey::Hash() const noexcept {
@ -136,19 +204,67 @@ bool ComputePipelineCacheKey::operator==(const ComputePipelineCacheKey& rhs) con
return std::memcmp(&rhs, this, sizeof *this) == 0; return std::memcmp(&rhs, this, sizeof *this) == 0;
} }
size_t GraphicsPipelineCacheKey::Hash() const noexcept {
const u64 hash = Common::CityHash64(reinterpret_cast<const char*>(this), Size());
return static_cast<size_t>(hash);
}
bool GraphicsPipelineCacheKey::operator==(const GraphicsPipelineCacheKey& rhs) const noexcept {
return std::memcmp(&rhs, this, Size()) == 0;
}
PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, Tegra::GPU& gpu_, PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, Tegra::GPU& gpu_,
Tegra::Engines::Maxwell3D& maxwell3d_, Tegra::Engines::Maxwell3D& maxwell3d_,
Tegra::Engines::KeplerCompute& kepler_compute_, Tegra::Engines::KeplerCompute& kepler_compute_,
Tegra::MemoryManager& gpu_memory_, const Device& device_, Tegra::MemoryManager& gpu_memory_, const Device& device_,
VKScheduler& scheduler_, VKDescriptorPool& descriptor_pool_, VKScheduler& scheduler_, VKDescriptorPool& descriptor_pool_,
VKUpdateDescriptorQueue& update_descriptor_queue_) VKUpdateDescriptorQueue& update_descriptor_queue_,
RenderPassCache& render_pass_cache_, BufferCache& buffer_cache_,
TextureCache& texture_cache_)
: VideoCommon::ShaderCache<ShaderInfo>{rasterizer_}, gpu{gpu_}, maxwell3d{maxwell3d_}, : VideoCommon::ShaderCache<ShaderInfo>{rasterizer_}, gpu{gpu_}, maxwell3d{maxwell3d_},
kepler_compute{kepler_compute_}, gpu_memory{gpu_memory_}, device{device_}, kepler_compute{kepler_compute_}, gpu_memory{gpu_memory_}, device{device_},
scheduler{scheduler_}, descriptor_pool{descriptor_pool_}, update_descriptor_queue{ scheduler{scheduler_}, descriptor_pool{descriptor_pool_},
update_descriptor_queue_} {} update_descriptor_queue{update_descriptor_queue_}, render_pass_cache{render_pass_cache_},
buffer_cache{buffer_cache_}, texture_cache{texture_cache_} {
const auto& float_control{device.FloatControlProperties()};
profile = Shader::Profile{
.unified_descriptor_binding = true,
.support_float_controls = true,
.support_separate_denorm_behavior = float_control.denormBehaviorIndependence ==
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR,
.support_separate_rounding_mode =
float_control.roundingModeIndependence == VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR,
.support_fp16_denorm_preserve = float_control.shaderDenormPreserveFloat16 != VK_FALSE,
.support_fp32_denorm_preserve = float_control.shaderDenormPreserveFloat32 != VK_FALSE,
.support_fp16_denorm_flush = float_control.shaderDenormFlushToZeroFloat16 != VK_FALSE,
.support_fp32_denorm_flush = float_control.shaderDenormFlushToZeroFloat32 != VK_FALSE,
.support_fp16_signed_zero_nan_preserve =
float_control.shaderSignedZeroInfNanPreserveFloat16 != VK_FALSE,
.support_fp32_signed_zero_nan_preserve =
float_control.shaderSignedZeroInfNanPreserveFloat32 != VK_FALSE,
.has_broken_spirv_clamp = true, // TODO: is_intel
};
}
PipelineCache::~PipelineCache() = default; PipelineCache::~PipelineCache() = default;
GraphicsPipeline* PipelineCache::CurrentGraphicsPipeline() {
MICROPROFILE_SCOPE(Vulkan_PipelineCache);
if (!RefreshStages()) {
return nullptr;
}
graphics_key.state.Refresh(maxwell3d, device.IsExtExtendedDynamicStateSupported());
const auto [pair, is_new]{graphics_cache.try_emplace(graphics_key)};
auto& pipeline{pair->second};
if (!is_new) {
return &pipeline;
}
pipeline = CreateGraphicsPipeline();
return &pipeline;
}
ComputePipeline* PipelineCache::CurrentComputePipeline() { ComputePipeline* PipelineCache::CurrentComputePipeline() {
MICROPROFILE_SCOPE(Vulkan_PipelineCache); MICROPROFILE_SCOPE(Vulkan_PipelineCache);
@ -170,45 +286,130 @@ ComputePipeline* PipelineCache::CurrentComputePipeline() {
return &pipeline; return &pipeline;
} }
pipeline = CreateComputePipeline(shader); pipeline = CreateComputePipeline(shader);
shader->compute_users.push_back(key);
return &pipeline; return &pipeline;
} }
bool PipelineCache::RefreshStages() {
const GPUVAddr base_addr{maxwell3d.regs.code_address.CodeAddress()};
for (size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
if (!maxwell3d.regs.IsShaderConfigEnabled(index)) {
graphics_key.unique_hashes[index] = u128{};
continue;
}
const auto& shader_config{maxwell3d.regs.shader_config[index]};
const auto program{static_cast<Maxwell::ShaderProgram>(index)};
const GPUVAddr shader_addr{base_addr + shader_config.offset};
const std::optional<VAddr> cpu_shader_addr{gpu_memory.GpuToCpuAddress(shader_addr)};
if (!cpu_shader_addr) {
LOG_ERROR(Render_Vulkan, "Invalid GPU address for shader 0x{:016x}", shader_addr);
return false;
}
const ShaderInfo* shader_info{TryGet(*cpu_shader_addr)};
if (!shader_info) {
const u32 offset{shader_config.offset};
shader_info = MakeShaderInfo(program, base_addr, offset, *cpu_shader_addr);
}
graphics_key.unique_hashes[index] = shader_info->unique_hash;
}
return true;
}
const ShaderInfo* PipelineCache::MakeShaderInfo(Maxwell::ShaderProgram program, GPUVAddr base_addr,
u32 start_address, VAddr cpu_addr) {
GraphicsEnvironment env{maxwell3d, gpu_memory, program, base_addr, start_address};
auto info = std::make_unique<ShaderInfo>();
if (const std::optional<u128> cached_hash{env.Analyze(start_address)}) {
info->unique_hash = *cached_hash;
info->size_bytes = env.CachedSize();
} else {
// Slow path, not really hit on commercial games
// Build a control flow graph to get the real shader size
flow_block_pool.ReleaseContents();
Shader::Maxwell::Flow::CFG cfg{env, flow_block_pool, start_address};
info->unique_hash = env.CalculateHash();
info->size_bytes = env.ReadSize();
}
const size_t size_bytes{info->size_bytes};
const ShaderInfo* const result{info.get()};
Register(std::move(info), cpu_addr, size_bytes);
return result;
}
GraphicsPipeline PipelineCache::CreateGraphicsPipeline() {
flow_block_pool.ReleaseContents();
inst_pool.ReleaseContents();
block_pool.ReleaseContents();
std::array<GraphicsEnvironment, Maxwell::MaxShaderProgram> envs;
std::array<Shader::IR::Program, Maxwell::MaxShaderProgram> programs;
const GPUVAddr base_addr{maxwell3d.regs.code_address.CodeAddress()};
for (size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
if (graphics_key.unique_hashes[index] == u128{}) {
continue;
}
const auto program{static_cast<Maxwell::ShaderProgram>(index)};
GraphicsEnvironment& env{envs[index]};
const u32 start_address{maxwell3d.regs.shader_config[index].offset};
env = GraphicsEnvironment{maxwell3d, gpu_memory, program, base_addr, start_address};
const u32 cfg_offset = start_address + sizeof(Shader::ProgramHeader);
Shader::Maxwell::Flow::CFG cfg(env, flow_block_pool, cfg_offset);
programs[index] = Shader::Maxwell::TranslateProgram(inst_pool, block_pool, env, cfg);
}
std::array<const Shader::Info*, Maxwell::MaxShaderStage> infos{};
std::array<vk::ShaderModule, Maxwell::MaxShaderStage> modules;
u32 binding{0};
for (size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
if (graphics_key.unique_hashes[index] == u128{}) {
continue;
}
UNIMPLEMENTED_IF(index == 0);
GraphicsEnvironment& env{envs[index]};
Shader::IR::Program& program{programs[index]};
const size_t stage_index{index - 1};
infos[stage_index] = &program.info;
std::vector<u32> code{EmitSPIRV(profile, env, program, binding)};
FILE* file = fopen("D:\\shader.spv", "wb");
fwrite(code.data(), 4, code.size(), file);
fclose(file);
std::system("spirv-cross --vulkan-semantics D:\\shader.spv");
modules[stage_index] = BuildShader(device, code);
}
return GraphicsPipeline(maxwell3d, gpu_memory, scheduler, buffer_cache, texture_cache, device,
descriptor_pool, update_descriptor_queue, render_pass_cache,
graphics_key.state, std::move(modules), infos);
}
ComputePipeline PipelineCache::CreateComputePipeline(ShaderInfo* shader_info) { ComputePipeline PipelineCache::CreateComputePipeline(ShaderInfo* shader_info) {
const GPUVAddr program_base{kepler_compute.regs.code_loc.Address()}; const GPUVAddr program_base{kepler_compute.regs.code_loc.Address()};
const auto& qmd{kepler_compute.launch_description}; const auto& qmd{kepler_compute.launch_description};
Environment env{kepler_compute, gpu_memory, program_base}; ComputeEnvironment env{kepler_compute, gpu_memory, program_base};
if (const std::optional<u128> cached_hash{env.Analyze(qmd.program_start)}) { if (const std::optional<u128> cached_hash{env.Analyze(qmd.program_start)}) {
// TODO: Load from cache // TODO: Load from cache
} }
const auto& float_control{device.FloatControlProperties()}; flow_block_pool.ReleaseContents();
const Shader::Profile profile{ inst_pool.ReleaseContents();
.unified_descriptor_binding = true, block_pool.ReleaseContents();
.support_float_controls = true,
.support_separate_denorm_behavior = float_control.denormBehaviorIndependence == Shader::Maxwell::Flow::CFG cfg{env, flow_block_pool, qmd.program_start};
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR, Shader::IR::Program program{Shader::Maxwell::TranslateProgram(inst_pool, block_pool, env, cfg)};
.support_separate_rounding_mode = u32 binding{0};
float_control.roundingModeIndependence == VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR, std::vector<u32> code{EmitSPIRV(profile, env, program, binding)};
.support_fp16_denorm_preserve = float_control.shaderDenormPreserveFloat16 != VK_FALSE,
.support_fp32_denorm_preserve = float_control.shaderDenormPreserveFloat32 != VK_FALSE,
.support_fp16_denorm_flush = float_control.shaderDenormFlushToZeroFloat16 != VK_FALSE,
.support_fp32_denorm_flush = float_control.shaderDenormFlushToZeroFloat32 != VK_FALSE,
.support_fp16_signed_zero_nan_preserve =
float_control.shaderSignedZeroInfNanPreserveFloat16 != VK_FALSE,
.support_fp32_signed_zero_nan_preserve =
float_control.shaderSignedZeroInfNanPreserveFloat32 != VK_FALSE,
.has_broken_spirv_clamp = true, // TODO: is_intel
};
const auto [info, code]{Shader::RecompileSPIRV(profile, env, qmd.program_start)};
/* /*
FILE* file = fopen("D:\\shader.spv", "wb"); FILE* file = fopen("D:\\shader.spv", "wb");
fwrite(code.data(), 4, code.size(), file); fwrite(code.data(), 4, code.size(), file);
fclose(file); fclose(file);
std::system("spirv-dis D:\\shader.spv"); std::system("spirv-dis D:\\shader.spv");
*/ */
shader_info->unique_hash = env.ComputeHash(); shader_info->unique_hash = env.CalculateHash();
shader_info->size_bytes = env.ShaderSize(); shader_info->size_bytes = env.ReadSize();
return ComputePipeline{device, descriptor_pool, update_descriptor_queue, info, return ComputePipeline{device, descriptor_pool, update_descriptor_queue, program.info,
BuildShader(device, code)}; BuildShader(device, code)};
} }
@ -216,9 +417,6 @@ ComputePipeline* PipelineCache::CreateComputePipelineWithoutShader(VAddr shader_
ShaderInfo shader; ShaderInfo shader;
ComputePipeline pipeline{CreateComputePipeline(&shader)}; ComputePipeline pipeline{CreateComputePipeline(&shader)};
const ComputePipelineCacheKey key{MakeComputePipelineKey(shader.unique_hash)}; const ComputePipelineCacheKey key{MakeComputePipelineKey(shader.unique_hash)};
shader.compute_users.push_back(key);
pipeline.AddRef();
const size_t size_bytes{shader.size_bytes}; const size_t size_bytes{shader.size_bytes};
Register(std::make_unique<ShaderInfo>(std::move(shader)), shader_cpu_addr, size_bytes); Register(std::make_unique<ShaderInfo>(std::move(shader)), shader_cpu_addr, size_bytes);
return &compute_cache.emplace(key, std::move(pipeline)).first->second; return &compute_cache.emplace(key, std::move(pipeline)).first->second;
@ -233,18 +431,4 @@ ComputePipelineCacheKey PipelineCache::MakeComputePipelineKey(u128 unique_hash)
}; };
} }
void PipelineCache::OnShaderRemoval(ShaderInfo* shader) {
for (const ComputePipelineCacheKey& key : shader->compute_users) {
const auto it = compute_cache.find(key);
ASSERT(it != compute_cache.end());
Pipeline& pipeline = it->second;
if (pipeline.RemoveRef()) {
// Wait for the pipeline to be free of GPU usage before destroying it
scheduler.Wait(pipeline.UsageTick());
compute_cache.erase(it);
}
}
}
} // namespace Vulkan } // namespace Vulkan

View file

@ -12,11 +12,18 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <boost/functional/hash.hpp>
#include "common/common_types.h" #include "common/common_types.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/microinstruction.h"
#include "shader_recompiler/frontend/maxwell/control_flow.h"
#include "shader_recompiler/object_pool.h"
#include "shader_recompiler/profile.h"
#include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h" #include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/shader_cache.h" #include "video_core/shader_cache.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -26,13 +33,6 @@ class System;
namespace Vulkan { namespace Vulkan {
class Device;
class RasterizerVulkan;
class ComputePipeline;
class VKDescriptorPool;
class VKScheduler;
class VKUpdateDescriptorQueue;
using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Maxwell = Tegra::Engines::Maxwell3D::Regs;
struct ComputePipelineCacheKey { struct ComputePipelineCacheKey {
@ -52,6 +52,26 @@ static_assert(std::has_unique_object_representations_v<ComputePipelineCacheKey>)
static_assert(std::is_trivially_copyable_v<ComputePipelineCacheKey>); static_assert(std::is_trivially_copyable_v<ComputePipelineCacheKey>);
static_assert(std::is_trivially_constructible_v<ComputePipelineCacheKey>); static_assert(std::is_trivially_constructible_v<ComputePipelineCacheKey>);
struct GraphicsPipelineCacheKey {
std::array<u128, 6> unique_hashes;
FixedPipelineState state;
size_t Hash() const noexcept;
bool operator==(const GraphicsPipelineCacheKey& rhs) const noexcept;
bool operator!=(const GraphicsPipelineCacheKey& rhs) const noexcept {
return !operator==(rhs);
}
size_t Size() const noexcept {
return sizeof(unique_hashes) + state.Size();
}
};
static_assert(std::has_unique_object_representations_v<GraphicsPipelineCacheKey>);
static_assert(std::is_trivially_copyable_v<GraphicsPipelineCacheKey>);
static_assert(std::is_trivially_constructible_v<GraphicsPipelineCacheKey>);
} // namespace Vulkan } // namespace Vulkan
namespace std { namespace std {
@ -63,14 +83,28 @@ struct hash<Vulkan::ComputePipelineCacheKey> {
} }
}; };
template <>
struct hash<Vulkan::GraphicsPipelineCacheKey> {
size_t operator()(const Vulkan::GraphicsPipelineCacheKey& k) const noexcept {
return k.Hash();
}
};
} // namespace std } // namespace std
namespace Vulkan { namespace Vulkan {
class ComputePipeline;
class Device;
class RasterizerVulkan;
class RenderPassCache;
class VKDescriptorPool;
class VKScheduler;
class VKUpdateDescriptorQueue;
struct ShaderInfo { struct ShaderInfo {
u128 unique_hash{}; u128 unique_hash{};
size_t size_bytes{}; size_t size_bytes{};
std::vector<ComputePipelineCacheKey> compute_users;
}; };
class PipelineCache final : public VideoCommon::ShaderCache<ShaderInfo> { class PipelineCache final : public VideoCommon::ShaderCache<ShaderInfo> {
@ -80,15 +114,23 @@ public:
Tegra::Engines::KeplerCompute& kepler_compute, Tegra::Engines::KeplerCompute& kepler_compute,
Tegra::MemoryManager& gpu_memory, const Device& device, Tegra::MemoryManager& gpu_memory, const Device& device,
VKScheduler& scheduler, VKDescriptorPool& descriptor_pool, VKScheduler& scheduler, VKDescriptorPool& descriptor_pool,
VKUpdateDescriptorQueue& update_descriptor_queue); VKUpdateDescriptorQueue& update_descriptor_queue,
RenderPassCache& render_pass_cache, BufferCache& buffer_cache,
TextureCache& texture_cache);
~PipelineCache() override; ~PipelineCache() override;
[[nodiscard]] GraphicsPipeline* CurrentGraphicsPipeline();
[[nodiscard]] ComputePipeline* CurrentComputePipeline(); [[nodiscard]] ComputePipeline* CurrentComputePipeline();
protected:
void OnShaderRemoval(ShaderInfo* shader) override;
private: private:
bool RefreshStages();
const ShaderInfo* MakeShaderInfo(Maxwell::ShaderProgram program, GPUVAddr base_addr,
u32 start_address, VAddr cpu_addr);
GraphicsPipeline CreateGraphicsPipeline();
ComputePipeline CreateComputePipeline(ShaderInfo* shader); ComputePipeline CreateComputePipeline(ShaderInfo* shader);
ComputePipeline* CreateComputePipelineWithoutShader(VAddr shader_cpu_addr); ComputePipeline* CreateComputePipelineWithoutShader(VAddr shader_cpu_addr);
@ -104,8 +146,20 @@ private:
VKScheduler& scheduler; VKScheduler& scheduler;
VKDescriptorPool& descriptor_pool; VKDescriptorPool& descriptor_pool;
VKUpdateDescriptorQueue& update_descriptor_queue; VKUpdateDescriptorQueue& update_descriptor_queue;
RenderPassCache& render_pass_cache;
BufferCache& buffer_cache;
TextureCache& texture_cache;
GraphicsPipelineCacheKey graphics_key{};
std::unordered_map<ComputePipelineCacheKey, ComputePipeline> compute_cache; std::unordered_map<ComputePipelineCacheKey, ComputePipeline> compute_cache;
std::unordered_map<GraphicsPipelineCacheKey, GraphicsPipeline> graphics_cache;
Shader::ObjectPool<Shader::IR::Inst> inst_pool;
Shader::ObjectPool<Shader::IR::Block> block_pool;
Shader::ObjectPool<Shader::Maxwell::Flow::Block> flow_block_pool;
Shader::Profile profile;
}; };
} // namespace Vulkan } // namespace Vulkan

View file

@ -141,15 +141,18 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra
blit_image(device, scheduler, state_tracker, descriptor_pool), blit_image(device, scheduler, state_tracker, descriptor_pool),
astc_decoder_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue, astc_decoder_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue,
memory_allocator), memory_allocator),
texture_cache_runtime{device, scheduler, memory_allocator, render_pass_cache(device), texture_cache_runtime{device, scheduler,
staging_pool, blit_image, astc_decoder_pass}, memory_allocator, staging_pool,
blit_image, astc_decoder_pass,
render_pass_cache},
texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory), texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory),
buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool, buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool,
update_descriptor_queue, descriptor_pool), update_descriptor_queue, descriptor_pool),
buffer_cache(*this, maxwell3d, kepler_compute, gpu_memory, cpu_memory_, buffer_cache_runtime), buffer_cache(*this, maxwell3d, kepler_compute, gpu_memory, cpu_memory_, buffer_cache_runtime),
pipeline_cache(*this, gpu, maxwell3d, kepler_compute, gpu_memory, device, scheduler, pipeline_cache(*this, gpu, maxwell3d, kepler_compute, gpu_memory, device, scheduler,
descriptor_pool, update_descriptor_queue), descriptor_pool, update_descriptor_queue, render_pass_cache, buffer_cache,
query_cache{*this, maxwell3d, gpu_memory, device, scheduler}, accelerate_dma{buffer_cache}, texture_cache),
query_cache{*this, maxwell3d, gpu_memory, device, scheduler}, accelerate_dma{ buffer_cache },
fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache, device, scheduler), fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache, device, scheduler),
wfi_event(device.GetLogical().CreateEvent()) { wfi_event(device.GetLogical().CreateEvent()) {
scheduler.SetQueryCache(query_cache); scheduler.SetQueryCache(query_cache);
@ -158,7 +161,39 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra
RasterizerVulkan::~RasterizerVulkan() = default; RasterizerVulkan::~RasterizerVulkan() = default;
void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) { void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
UNREACHABLE_MSG("Rendering not implemented {} {}", is_indexed, is_instanced); MICROPROFILE_SCOPE(Vulkan_Drawing);
SCOPE_EXIT({ gpu.TickWork(); });
FlushWork();
query_cache.UpdateCounters();
GraphicsPipeline* const pipeline{pipeline_cache.CurrentGraphicsPipeline()};
if (!pipeline) {
return;
}
update_descriptor_queue.Acquire();
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
pipeline->Configure(is_indexed);
BeginTransformFeedback();
scheduler.RequestRenderpass(texture_cache.GetFramebuffer());
UpdateDynamicStates();
const auto& regs{maxwell3d.regs};
const u32 num_instances{maxwell3d.mme_draw.instance_count};
const DrawParams draw_params{MakeDrawParams(regs, num_instances, is_instanced, is_indexed)};
scheduler.Record([draw_params](vk::CommandBuffer cmdbuf) {
if (draw_params.is_indexed) {
cmdbuf.DrawIndexed(draw_params.num_vertices, draw_params.num_instances, 0,
draw_params.base_vertex, draw_params.base_instance);
} else {
cmdbuf.Draw(draw_params.num_vertices, draw_params.num_instances,
draw_params.base_vertex, draw_params.base_instance);
}
});
EndTransformFeedback();
} }
void RasterizerVulkan::Clear() { void RasterizerVulkan::Clear() {
@ -487,13 +522,11 @@ void RasterizerVulkan::FlushWork() {
if ((++draw_counter & 7) != 7) { if ((++draw_counter & 7) != 7) {
return; return;
} }
if (draw_counter < DRAWS_TO_DISPATCH) { if (draw_counter < DRAWS_TO_DISPATCH) {
// Send recorded tasks to the worker thread // Send recorded tasks to the worker thread
scheduler.DispatchWork(); scheduler.DispatchWork();
return; return;
} }
// Otherwise (every certain number of draws) flush execution. // Otherwise (every certain number of draws) flush execution.
// This submits commands to the Vulkan driver. // This submits commands to the Vulkan driver.
scheduler.Flush(); scheduler.Flush();

View file

@ -23,6 +23,7 @@
#include "video_core/renderer_vulkan/vk_fence_manager.h" #include "video_core/renderer_vulkan/vk_fence_manager.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h" #include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_query_cache.h" #include "video_core/renderer_vulkan/vk_query_cache.h"
#include "video_core/renderer_vulkan/vk_render_pass_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_texture_cache.h"
@ -148,6 +149,7 @@ private:
VKUpdateDescriptorQueue update_descriptor_queue; VKUpdateDescriptorQueue update_descriptor_queue;
BlitImageHelper blit_image; BlitImageHelper blit_image;
ASTCDecoderPass astc_decoder_pass; ASTCDecoderPass astc_decoder_pass;
RenderPassCache render_pass_cache;
TextureCacheRuntime texture_cache_runtime; TextureCacheRuntime texture_cache_runtime;
TextureCache texture_cache; TextureCache texture_cache;

View file

@ -0,0 +1,100 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <unordered_map>
#include <boost/container/static_vector.hpp>
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_render_pass_cache.h"
#include "video_core/surface.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
namespace {
using VideoCore::Surface::PixelFormat;
constexpr std::array ATTACHMENT_REFERENCES{
VkAttachmentReference{0, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{1, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{2, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{3, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{4, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{5, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{6, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{7, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{8, VK_IMAGE_LAYOUT_GENERAL},
};
VkAttachmentDescription AttachmentDescription(const Device& device, PixelFormat format,
VkSampleCountFlagBits samples) {
using MaxwellToVK::SurfaceFormat;
return {
.flags = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,
.format = SurfaceFormat(device, FormatType::Optimal, true, format).format,
.samples = samples,
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
};
}
} // Anonymous namespace
RenderPassCache::RenderPassCache(const Device& device_) : device{&device_} {}
VkRenderPass RenderPassCache::Get(const RenderPassKey& key) {
const auto [pair, is_new] = cache.try_emplace(key);
if (!is_new) {
return *pair->second;
}
boost::container::static_vector<VkAttachmentDescription, 9> descriptions;
u32 num_images{0};
for (size_t index = 0; index < key.color_formats.size(); ++index) {
const PixelFormat format{key.color_formats[index]};
if (format == PixelFormat::Invalid) {
continue;
}
descriptions.push_back(AttachmentDescription(*device, format, key.samples));
++num_images;
}
const size_t num_colors{descriptions.size()};
const VkAttachmentReference* depth_attachment{};
if (key.depth_format != PixelFormat::Invalid) {
depth_attachment = &ATTACHMENT_REFERENCES[num_colors];
descriptions.push_back(AttachmentDescription(*device, key.depth_format, key.samples));
}
const VkSubpassDescription subpass{
.flags = 0,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.pInputAttachments = nullptr,
.colorAttachmentCount = static_cast<u32>(num_colors),
.pColorAttachments = num_colors != 0 ? ATTACHMENT_REFERENCES.data() : nullptr,
.pResolveAttachments = nullptr,
.pDepthStencilAttachment = depth_attachment,
.preserveAttachmentCount = 0,
.pPreserveAttachments = nullptr,
};
pair->second = device->GetLogical().CreateRenderPass({
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.attachmentCount = static_cast<u32>(descriptions.size()),
.pAttachments = descriptions.data(),
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = nullptr,
});
return *pair->second;
}
} // namespace Vulkan

View file

@ -0,0 +1,53 @@
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <unordered_map>
#include "video_core/surface.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"
namespace Vulkan {
struct RenderPassKey {
auto operator<=>(const RenderPassKey&) const noexcept = default;
std::array<VideoCore::Surface::PixelFormat, 8> color_formats;
VideoCore::Surface::PixelFormat depth_format;
VkSampleCountFlagBits samples;
};
} // namespace Vulkan
namespace std {
template <>
struct hash<Vulkan::RenderPassKey> {
[[nodiscard]] size_t operator()(const Vulkan::RenderPassKey& key) const noexcept {
size_t value = static_cast<size_t>(key.depth_format) << 48;
value ^= static_cast<size_t>(key.samples) << 52;
for (size_t i = 0; i < key.color_formats.size(); ++i) {
value ^= static_cast<size_t>(key.color_formats[i]) << (i * 6);
}
return value;
}
};
} // namespace std
namespace Vulkan {
class Device;
class RenderPassCache {
public:
explicit RenderPassCache(const Device& device_);
VkRenderPass Get(const RenderPassKey& key);
private:
const Device* device{};
std::unordered_map<RenderPassKey, vk::RenderPass> cache;
};
} // namespace Vulkan

View file

@ -18,6 +18,7 @@
#include "video_core/renderer_vulkan/vk_scheduler.h" #include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h" #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h" #include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_render_pass_cache.h"
#include "video_core/vulkan_common/vulkan_device.h" #include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_memory_allocator.h" #include "video_core/vulkan_common/vulkan_memory_allocator.h"
#include "video_core/vulkan_common/vulkan_wrapper.h" #include "video_core/vulkan_common/vulkan_wrapper.h"
@ -34,19 +35,6 @@ using VideoCommon::SubresourceRange;
using VideoCore::Surface::IsPixelFormatASTC; using VideoCore::Surface::IsPixelFormatASTC;
namespace { namespace {
constexpr std::array ATTACHMENT_REFERENCES{
VkAttachmentReference{0, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{1, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{2, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{3, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{4, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{5, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{6, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{7, VK_IMAGE_LAYOUT_GENERAL},
VkAttachmentReference{8, VK_IMAGE_LAYOUT_GENERAL},
};
constexpr VkBorderColor ConvertBorderColor(const std::array<float, 4>& color) { constexpr VkBorderColor ConvertBorderColor(const std::array<float, 4>& color) {
if (color == std::array<float, 4>{0, 0, 0, 0}) { if (color == std::array<float, 4>{0, 0, 0, 0}) {
return VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; return VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
@ -226,23 +214,6 @@ constexpr VkBorderColor ConvertBorderColor(const std::array<float, 4>& color) {
} }
} }
[[nodiscard]] VkAttachmentDescription AttachmentDescription(const Device& device,
const ImageView* image_view) {
using MaxwellToVK::SurfaceFormat;
const PixelFormat pixel_format = image_view->format;
return VkAttachmentDescription{
.flags = VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT,
.format = SurfaceFormat(device, FormatType::Optimal, true, pixel_format).format,
.samples = image_view->Samples(),
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
};
}
[[nodiscard]] VkComponentSwizzle ComponentSwizzle(SwizzleSource swizzle) { [[nodiscard]] VkComponentSwizzle ComponentSwizzle(SwizzleSource swizzle) {
switch (swizzle) { switch (swizzle) {
case SwizzleSource::Zero: case SwizzleSource::Zero:
@ -1164,7 +1135,6 @@ Sampler::Sampler(TextureCacheRuntime& runtime, const Tegra::Texture::TSCEntry& t
Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM_RT> color_buffers, Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM_RT> color_buffers,
ImageView* depth_buffer, const VideoCommon::RenderTargets& key) { ImageView* depth_buffer, const VideoCommon::RenderTargets& key) {
std::vector<VkAttachmentDescription> descriptions;
std::vector<VkImageView> attachments; std::vector<VkImageView> attachments;
RenderPassKey renderpass_key{}; RenderPassKey renderpass_key{};
s32 num_layers = 1; s32 num_layers = 1;
@ -1175,7 +1145,6 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
renderpass_key.color_formats[index] = PixelFormat::Invalid; renderpass_key.color_formats[index] = PixelFormat::Invalid;
continue; continue;
} }
descriptions.push_back(AttachmentDescription(runtime.device, color_buffer));
attachments.push_back(color_buffer->RenderTarget()); attachments.push_back(color_buffer->RenderTarget());
renderpass_key.color_formats[index] = color_buffer->format; renderpass_key.color_formats[index] = color_buffer->format;
num_layers = std::max(num_layers, color_buffer->range.extent.layers); num_layers = std::max(num_layers, color_buffer->range.extent.layers);
@ -1185,10 +1154,7 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
++num_images; ++num_images;
} }
const size_t num_colors = attachments.size(); const size_t num_colors = attachments.size();
const VkAttachmentReference* depth_attachment =
depth_buffer ? &ATTACHMENT_REFERENCES[num_colors] : nullptr;
if (depth_buffer) { if (depth_buffer) {
descriptions.push_back(AttachmentDescription(runtime.device, depth_buffer));
attachments.push_back(depth_buffer->RenderTarget()); attachments.push_back(depth_buffer->RenderTarget());
renderpass_key.depth_format = depth_buffer->format; renderpass_key.depth_format = depth_buffer->format;
num_layers = std::max(num_layers, depth_buffer->range.extent.layers); num_layers = std::max(num_layers, depth_buffer->range.extent.layers);
@ -1201,40 +1167,14 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
} }
renderpass_key.samples = samples; renderpass_key.samples = samples;
const auto& device = runtime.device.GetLogical(); renderpass = runtime.render_pass_cache.Get(renderpass_key);
const auto [cache_pair, is_new] = runtime.renderpass_cache.try_emplace(renderpass_key);
if (is_new) {
const VkSubpassDescription subpass{
.flags = 0,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.pInputAttachments = nullptr,
.colorAttachmentCount = static_cast<u32>(num_colors),
.pColorAttachments = num_colors != 0 ? ATTACHMENT_REFERENCES.data() : nullptr,
.pResolveAttachments = nullptr,
.pDepthStencilAttachment = depth_attachment,
.preserveAttachmentCount = 0,
.pPreserveAttachments = nullptr,
};
cache_pair->second = device.CreateRenderPass(VkRenderPassCreateInfo{
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.attachmentCount = static_cast<u32>(descriptions.size()),
.pAttachments = descriptions.data(),
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = nullptr,
});
}
renderpass = *cache_pair->second;
render_area = VkExtent2D{ render_area = VkExtent2D{
.width = key.size.width, .width = key.size.width,
.height = key.size.height, .height = key.size.height,
}; };
num_color_buffers = static_cast<u32>(num_colors); num_color_buffers = static_cast<u32>(num_colors);
framebuffer = device.CreateFramebuffer(VkFramebufferCreateInfo{ framebuffer = runtime.device.GetLogical().CreateFramebuffer({
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.flags = 0, .flags = 0,

View file

@ -26,35 +26,10 @@ class Device;
class Image; class Image;
class ImageView; class ImageView;
class Framebuffer; class Framebuffer;
class RenderPassCache;
class StagingBufferPool; class StagingBufferPool;
class VKScheduler; class VKScheduler;
struct RenderPassKey {
constexpr auto operator<=>(const RenderPassKey&) const noexcept = default;
std::array<PixelFormat, NUM_RT> color_formats;
PixelFormat depth_format;
VkSampleCountFlagBits samples;
};
} // namespace Vulkan
namespace std {
template <>
struct hash<Vulkan::RenderPassKey> {
[[nodiscard]] constexpr size_t operator()(const Vulkan::RenderPassKey& key) const noexcept {
size_t value = static_cast<size_t>(key.depth_format) << 48;
value ^= static_cast<size_t>(key.samples) << 52;
for (size_t i = 0; i < key.color_formats.size(); ++i) {
value ^= static_cast<size_t>(key.color_formats[i]) << (i * 6);
}
return value;
}
};
} // namespace std
namespace Vulkan {
struct TextureCacheRuntime { struct TextureCacheRuntime {
const Device& device; const Device& device;
VKScheduler& scheduler; VKScheduler& scheduler;
@ -62,7 +37,7 @@ struct TextureCacheRuntime {
StagingBufferPool& staging_buffer_pool; StagingBufferPool& staging_buffer_pool;
BlitImageHelper& blit_image_helper; BlitImageHelper& blit_image_helper;
ASTCDecoderPass& astc_decoder_pass; ASTCDecoderPass& astc_decoder_pass;
std::unordered_map<RenderPassKey, vk::RenderPass> renderpass_cache{}; RenderPassCache& render_pass_cache;
void Finish(); void Finish();

View file

@ -49,6 +49,7 @@ constexpr std::array REQUIRED_EXTENSIONS{
VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME, VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME,
VK_EXT_ROBUSTNESS_2_EXTENSION_NAME, VK_EXT_ROBUSTNESS_2_EXTENSION_NAME,
VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME, VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME,
VK_EXT_SHADER_DEMOTE_TO_HELPER_INVOCATION_EXTENSION_NAME,
#ifdef _WIN32 #ifdef _WIN32
VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME, VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME,
#endif #endif
@ -312,6 +313,13 @@ Device::Device(VkInstance instance_, vk::PhysicalDevice physical_, VkSurfaceKHR
}; };
SetNext(next, host_query_reset); SetNext(next, host_query_reset);
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT demote{
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT,
.pNext = nullptr,
.shaderDemoteToHelperInvocation = true,
};
SetNext(next, demote);
VkPhysicalDeviceFloat16Int8FeaturesKHR float16_int8; VkPhysicalDeviceFloat16Int8FeaturesKHR float16_int8;
if (is_float16_supported) { if (is_float16_supported) {
float16_int8 = { float16_int8 = {
@ -597,8 +605,14 @@ void Device::CheckSuitability(bool requires_swapchain) const {
throw vk::Exception(VK_ERROR_FEATURE_NOT_PRESENT); throw vk::Exception(VK_ERROR_FEATURE_NOT_PRESENT);
} }
} }
VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT demote{};
demote.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT;
demote.pNext = nullptr;
VkPhysicalDeviceRobustness2FeaturesEXT robustness2{}; VkPhysicalDeviceRobustness2FeaturesEXT robustness2{};
robustness2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT; robustness2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT;
robustness2.pNext = &demote;
VkPhysicalDeviceFeatures2KHR features2{}; VkPhysicalDeviceFeatures2KHR features2{};
features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
@ -625,6 +639,7 @@ void Device::CheckSuitability(bool requires_swapchain) const {
std::make_pair(features.shaderImageGatherExtended, "shaderImageGatherExtended"), std::make_pair(features.shaderImageGatherExtended, "shaderImageGatherExtended"),
std::make_pair(features.shaderStorageImageWriteWithoutFormat, std::make_pair(features.shaderStorageImageWriteWithoutFormat,
"shaderStorageImageWriteWithoutFormat"), "shaderStorageImageWriteWithoutFormat"),
std::make_pair(demote.shaderDemoteToHelperInvocation, "shaderDemoteToHelperInvocation"),
std::make_pair(robustness2.robustBufferAccess2, "robustBufferAccess2"), std::make_pair(robustness2.robustBufferAccess2, "robustBufferAccess2"),
std::make_pair(robustness2.robustImageAccess2, "robustImageAccess2"), std::make_pair(robustness2.robustImageAccess2, "robustImageAccess2"),
std::make_pair(robustness2.nullDescriptor, "nullDescriptor"), std::make_pair(robustness2.nullDescriptor, "nullDescriptor"),