1
0
Fork 1
forked from suyu/suyu

Merge pull request #50 from neobrain/pica

Further work on Pica emulation
This commit is contained in:
bunnei 2014-08-25 16:12:10 -04:00
commit 97fd8fc38d
24 changed files with 1493 additions and 382 deletions

View file

@ -9,6 +9,11 @@ add_definitions(-Wno-attributes)
add_definitions(-DSINGLETHREADED)
add_definitions(${CXX_COMPILE_FLAGS})
find_package(PNG)
if (PNG_FOUND)
add_definitions(-DHAVE_PNG)
endif ()
# dependency checking
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/externals/cmake-modules/")
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_SOURCE_DIR}/CMakeTests)

View file

@ -12,7 +12,7 @@ add_executable(citra ${SRCS} ${HEADERS})
if (APPLE)
target_link_libraries(citra core common video_core iconv pthread ${COREFOUNDATION_LIBRARY} ${OPENGL_LIBRARIES} ${GLEW_LIBRARY} ${GLFW_LIBRARIES})
else()
target_link_libraries(citra core common video_core GLEW pthread X11 Xxf86vm Xi Xcursor ${OPENGL_LIBRARIES} ${GLFW_LIBRARIES} rt ${X11_Xrandr_LIB} ${X11_xv86vmode_LIB})
target_link_libraries(citra core common video_core GLEW pthread X11 Xxf86vm Xi Xcursor ${OPENGL_LIBRARIES} ${GLFW_LIBRARIES} rt ${X11_Xrandr_LIB} ${X11_xv86vmode_LIB} ${PNG_LIBRARIES})
endif()
#install(TARGETS citra RUNTIME DESTINATION ${bindir})

View file

@ -47,7 +47,7 @@ else()
set(RT_LIBRARY rt)
endif()
target_link_libraries(citra-qt core common video_core qhexedit ${ICONV_LIBRARY} ${COREFOUNDATION_LIBRARY} ${QT_LIBRARIES} ${OPENGL_LIBRARIES} ${RT_LIBRARY} ${GLEW_LIBRARY})
target_link_libraries(citra-qt core common video_core qhexedit ${ICONV_LIBRARY} ${COREFOUNDATION_LIBRARY} ${QT_LIBRARIES} ${OPENGL_LIBRARIES} ${RT_LIBRARY} ${GLEW_LIBRARY} ${PNG_LIBRARIES})
if(USE_QT5)
target_link_libraries(citra-qt Qt5::Gui Qt5::Widgets Qt5::OpenGL)
endif()

View file

@ -2,53 +2,21 @@
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "graphics_cmdlists.hxx"
#include <QListView>
#include <QPushButton>
#include <QVBoxLayout>
#include <QTreeView>
extern GraphicsDebugger g_debugger;
#include "graphics_cmdlists.hxx"
GPUCommandListModel::GPUCommandListModel(QObject* parent) : QAbstractItemModel(parent)
GPUCommandListModel::GPUCommandListModel(QObject* parent) : QAbstractListModel(parent)
{
root_item = new TreeItem(TreeItem::ROOT, 0, NULL, this);
connect(this, SIGNAL(CommandListCalled()), this, SLOT(OnCommandListCalledInternal()), Qt::UniqueConnection);
}
QModelIndex GPUCommandListModel::index(int row, int column, const QModelIndex& parent) const
{
TreeItem* item;
if (!parent.isValid()) {
item = root_item;
} else {
item = (TreeItem*)parent.internalPointer();
}
return createIndex(row, column, item->children[row]);
}
QModelIndex GPUCommandListModel::parent(const QModelIndex& child) const
{
if (!child.isValid())
return QModelIndex();
TreeItem* item = (TreeItem*)child.internalPointer();
if (item->parent == NULL)
return QModelIndex();
return createIndex(item->parent->index, 0, item->parent);
}
int GPUCommandListModel::rowCount(const QModelIndex& parent) const
{
TreeItem* item;
if (!parent.isValid()) {
item = root_item;
} else {
item = (TreeItem*)parent.internalPointer();
}
return item->children.size();
return pica_trace.writes.size();
}
int GPUCommandListModel::columnCount(const QModelIndex& parent) const
@ -61,79 +29,67 @@ QVariant GPUCommandListModel::data(const QModelIndex& index, int role) const
if (!index.isValid())
return QVariant();
const TreeItem* item = (const TreeItem*)index.internalPointer();
const auto& writes = pica_trace.writes;
const Pica::CommandProcessor::CommandHeader cmd{writes[index.row()].Id()};
const u32 val{writes[index.row()].Value()};
if (item->type == TreeItem::COMMAND_LIST)
{
const GraphicsDebugger::PicaCommandList& cmdlist = command_lists[item->index].second;
u32 address = command_lists[item->index].first;
if (role == Qt::DisplayRole && index.column() == 0)
{
return QVariant(QString("0x%1 bytes at 0x%2").arg(cmdlist.size(), 0, 16).arg(address, 8, 16, QLatin1Char('0')));
if (role == Qt::DisplayRole) {
QString content;
if (index.column() == 0) {
content = QString::fromLatin1(Pica::Regs::GetCommandName(cmd.cmd_id).c_str());
content.append(" ");
} else if (index.column() == 1) {
content.append(QString("%1 ").arg(cmd.hex, 8, 16, QLatin1Char('0')));
content.append(QString("%1 ").arg(val, 8, 16, QLatin1Char('0')));
}
}
else
{
// index refers to a specific command
const GraphicsDebugger::PicaCommandList& cmdlist = command_lists[item->parent->index].second;
const GraphicsDebugger::PicaCommand& cmd = cmdlist[item->index];
const Pica::CommandProcessor::CommandHeader& header = cmd.GetHeader();
if (role == Qt::DisplayRole) {
QString content;
if (index.column() == 0) {
content = QString::fromLatin1(Pica::Regs::GetCommandName(header.cmd_id).c_str());
content.append(" ");
} else if (index.column() == 1) {
for (int j = 0; j < cmd.size(); ++j)
content.append(QString("%1 ").arg(cmd[j], 8, 16, QLatin1Char('0')));
}
return QVariant(content);
}
return QVariant(content);
}
return QVariant();
}
void GPUCommandListModel::OnCommandListCalled(const GraphicsDebugger::PicaCommandList& lst, bool is_new)
{
emit CommandListCalled();
}
void GPUCommandListModel::OnCommandListCalledInternal()
void GPUCommandListModel::OnPicaTraceFinished(const Pica::DebugUtils::PicaTrace& trace)
{
beginResetModel();
command_lists = GetDebugger()->GetCommandLists();
// delete root item and rebuild tree
delete root_item;
root_item = new TreeItem(TreeItem::ROOT, 0, NULL, this);
for (int command_list_idx = 0; command_list_idx < command_lists.size(); ++command_list_idx) {
TreeItem* command_list_item = new TreeItem(TreeItem::COMMAND_LIST, command_list_idx, root_item, root_item);
root_item->children.push_back(command_list_item);
const GraphicsDebugger::PicaCommandList& command_list = command_lists[command_list_idx].second;
for (int command_idx = 0; command_idx < command_list.size(); ++command_idx) {
TreeItem* command_item = new TreeItem(TreeItem::COMMAND, command_idx, command_list_item, command_list_item);
command_list_item->children.push_back(command_item);
}
}
pica_trace = trace;
endResetModel();
}
GPUCommandListWidget::GPUCommandListWidget(QWidget* parent) : QDockWidget(tr("Pica Command List"), parent)
{
GPUCommandListModel* model = new GPUCommandListModel(this);
g_debugger.RegisterObserver(model);
QTreeView* tree_widget = new QTreeView;
tree_widget->setModel(model);
tree_widget->setFont(QFont("monospace"));
setWidget(tree_widget);
QWidget* main_widget = new QWidget;
QTreeView* list_widget = new QTreeView;
list_widget->setModel(model);
list_widget->setFont(QFont("monospace"));
list_widget->setRootIsDecorated(false);
QPushButton* toggle_tracing = new QPushButton(tr("Start Tracing"));
connect(toggle_tracing, SIGNAL(clicked()), this, SLOT(OnToggleTracing()));
connect(this, SIGNAL(TracingFinished(const Pica::DebugUtils::PicaTrace&)),
model, SLOT(OnPicaTraceFinished(const Pica::DebugUtils::PicaTrace&)));
QVBoxLayout* main_layout = new QVBoxLayout;
main_layout->addWidget(list_widget);
main_layout->addWidget(toggle_tracing);
main_widget->setLayout(main_layout);
setWidget(main_widget);
}
void GPUCommandListWidget::OnToggleTracing()
{
if (!Pica::DebugUtils::IsPicaTracing()) {
Pica::DebugUtils::StartPicaTracing();
} else {
pica_trace = Pica::DebugUtils::FinishPicaTracing();
emit TracingFinished(*pica_trace);
}
}

View file

@ -4,53 +4,28 @@
#pragma once
#include <QAbstractItemModel>
#include <QAbstractListModel>
#include <QDockWidget>
#include "video_core/gpu_debugger.h"
#include "video_core/debug_utils/debug_utils.h"
// TODO: Rename class, since it's not actually a list model anymore...
class GPUCommandListModel : public QAbstractItemModel, public GraphicsDebugger::DebuggerObserver
class GPUCommandListModel : public QAbstractListModel
{
Q_OBJECT
public:
GPUCommandListModel(QObject* parent);
QModelIndex index(int row, int column, const QModelIndex& parent = QModelIndex()) const;
QModelIndex parent(const QModelIndex& child) const;
int columnCount(const QModelIndex& parent = QModelIndex()) const;
int rowCount(const QModelIndex& parent = QModelIndex()) const override;
QVariant data(const QModelIndex& index, int role = Qt::DisplayRole) const override;
public:
void OnCommandListCalled(const GraphicsDebugger::PicaCommandList& lst, bool is_new) override;
public slots:
void OnCommandListCalledInternal();
signals:
void CommandListCalled();
void OnPicaTraceFinished(const Pica::DebugUtils::PicaTrace& trace);
private:
struct TreeItem : public QObject
{
enum Type {
ROOT,
COMMAND_LIST,
COMMAND
};
TreeItem(Type type, int index, TreeItem* item_parent, QObject* parent) : QObject(parent), type(type), index(index), parent(item_parent) {}
Type type;
int index;
std::vector<TreeItem*> children;
TreeItem* parent;
};
std::vector<std::pair<u32,GraphicsDebugger::PicaCommandList>> command_lists;
TreeItem* root_item;
Pica::DebugUtils::PicaTrace pica_trace;
};
class GPUCommandListWidget : public QDockWidget
@ -60,5 +35,12 @@ class GPUCommandListWidget : public QDockWidget
public:
GPUCommandListWidget(QWidget* parent = 0);
public slots:
void OnToggleTracing();
signals:
void TracingFinished(const Pica::DebugUtils::PicaTrace&);
private:
std::unique_ptr<Pica::DebugUtils::PicaTrace> pica_trace;
};

View file

@ -52,11 +52,11 @@ GMainWindow::GMainWindow()
graphicsWidget = new GPUCommandStreamWidget(this);
addDockWidget(Qt::RightDockWidgetArea, graphicsWidget);
callstackWidget->hide();
graphicsWidget ->hide();
graphicsCommandsWidget = new GPUCommandListWidget(this);
addDockWidget(Qt::RightDockWidgetArea, graphicsCommandsWidget);
callstackWidget->hide();
graphicsCommandsWidget->hide();
QMenu* debug_menu = ui.menu_View->addMenu(tr("Debugging"));
debug_menu->addAction(disasmWidget->toggleViewAction());

View file

@ -36,39 +36,55 @@ static inline u8* GetCommandBuffer(u32 thread_id) {
0x800 + (thread_id * sizeof(CommandBuffer)));
}
static inline FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) {
if (0 == g_shared_memory)
return nullptr;
_dbg_assert_msg_(GSP, screen_index < 2, "Invalid screen index");
// For each thread there are two FrameBufferUpdate fields
u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate);
return (FrameBufferUpdate*)Kernel::GetSharedMemoryPointer(g_shared_memory, offset);
}
/// Gets a pointer to the interrupt relay queue for a given thread index
static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) {
return (InterruptRelayQueue*)Kernel::GetSharedMemoryPointer(g_shared_memory,
sizeof(InterruptRelayQueue) * thread_id);
}
void WriteHWRegs(u32 base_address, u32 size_in_bytes, const u32* data) {
// TODO: Return proper error codes
if (base_address + size_in_bytes >= 0x420000) {
ERROR_LOG(GPU, "Write address out of range! (address=0x%08x, size=0x%08x)",
base_address, size_in_bytes);
return;
}
// size should be word-aligned
if ((size_in_bytes % 4) != 0) {
ERROR_LOG(GPU, "Invalid size 0x%08x", size_in_bytes);
return;
}
while (size_in_bytes > 0) {
GPU::Write<u32>(base_address + 0x1EB00000, *data);
size_in_bytes -= 4;
++data;
base_address += 4;
}
}
/// Write a GSP GPU hardware register
void WriteHWRegs(Service::Interface* self) {
u32* cmd_buff = Service::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
// TODO: Return proper error codes
if (reg_addr + size >= 0x420000) {
ERROR_LOG(GPU, "Write address out of range! (address=0x%08x, size=0x%08x)", reg_addr, size);
return;
}
// size should be word-aligned
if ((size % 4) != 0) {
ERROR_LOG(GPU, "Invalid size 0x%08x", size);
return;
}
u32* src = (u32*)Memory::GetPointer(cmd_buff[0x4]);
while (size > 0) {
GPU::Write<u32>(reg_addr + 0x1EB00000, *src);
size -= 4;
++src;
reg_addr += 4;
}
WriteHWRegs(reg_addr, size, src);
}
/// Read a GSP GPU hardware register
@ -100,6 +116,40 @@ void ReadHWRegs(Service::Interface* self) {
}
}
void SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) {
u32 base_address = 0x400000;
if (info.active_fb == 0) {
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].address_left1), 4, &info.address_left);
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].address_right1), 4, &info.address_right);
} else {
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].address_left2), 4, &info.address_left);
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].address_right2), 4, &info.address_right);
}
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].stride), 4, &info.stride);
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].color_format), 4, &info.format);
WriteHWRegs(base_address + 4 * GPU_REG_INDEX(framebuffer_config[screen_id].active_fb), 4, &info.shown_fb);
}
/**
* GSP_GPU::SetBufferSwap service function
*
* Updates GPU display framebuffer configuration using the specified parameters.
*
* Inputs:
* 1 : Screen ID (0 = top screen, 1 = bottom screen)
* 2-7 : FrameBufferInfo structure
* Outputs:
* 1: Result code
*/
void SetBufferSwap(Service::Interface* self) {
u32* cmd_buff = Service::GetCommandBuffer();
u32 screen_id = cmd_buff[1];
FrameBufferInfo* fb_info = (FrameBufferInfo*)&cmd_buff[2];
SetBufferSwap(screen_id, *fb_info);
cmd_buff[1] = 0; // No error
}
/**
* GSP_GPU::RegisterInterruptRelayQueue service function
* Inputs:
@ -127,6 +177,7 @@ void RegisterInterruptRelayQueue(Service::Interface* self) {
/**
* Signals that the specified interrupt type has occurred to userland code
* @param interrupt_id ID of interrupt that is being signalled
* @todo This should probably take a thread_id parameter and only signal this thread?
*/
void SignalInterrupt(InterruptId interrupt_id) {
if (0 == g_interrupt_event) {
@ -152,7 +203,7 @@ void SignalInterrupt(InterruptId interrupt_id) {
}
/// Executes the next GSP command
void ExecuteCommand(const Command& command) {
void ExecuteCommand(const Command& command, u32 thread_id) {
// Utility function to convert register ID to address
auto WriteGPURegister = [](u32 id, u32 data) {
GPU::Write<u32>(0x1EF00000 + 4 * id, data);
@ -179,11 +230,6 @@ void ExecuteCommand(const Command& command) {
// TODO: Not sure if we are supposed to always write this .. seems to trigger processing though
WriteGPURegister(GPU_REG_INDEX(command_processor_config.trigger), 1);
// TODO: Move this to GPU
// TODO: Not sure what units the size is measured in
g_debugger.CommandListCalled(params.address,
(u32*)Memory::GetPointer(params.address),
params.size);
SignalInterrupt(InterruptId::P3D);
break;
}
@ -223,6 +269,15 @@ void ExecuteCommand(const Command& command) {
SignalInterrupt(InterruptId::PPF);
SignalInterrupt(InterruptId::P3D);
SignalInterrupt(InterruptId::DMA);
// Update framebuffer information if requested
for (int screen_id = 0; screen_id < 2; ++screen_id) {
FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id);
if (info->is_dirty)
SetBufferSwap(screen_id, info->framebuffer_info[info->index]);
info->is_dirty = false;
}
break;
}
@ -265,7 +320,7 @@ void TriggerCmdReqQueue(Service::Interface* self) {
g_debugger.GXCommandProcessed((u8*)&command_buffer->commands[i]);
// Decode and execute command
ExecuteCommand(command_buffer->commands[i]);
ExecuteCommand(command_buffer->commands[i], thread_id);
// Indicates that command has completed
command_buffer->number_commands = command_buffer->number_commands - 1;
@ -278,7 +333,7 @@ const Interface::FunctionInfo FunctionTable[] = {
{0x00020084, nullptr, "WriteHWRegsWithMask"},
{0x00030082, nullptr, "WriteHWRegRepeat"},
{0x00040080, ReadHWRegs, "ReadHWRegs"},
{0x00050200, nullptr, "SetBufferSwap"},
{0x00050200, SetBufferSwap, "SetBufferSwap"},
{0x00060082, nullptr, "SetCommandList"},
{0x000700C2, nullptr, "RequestDma"},
{0x00080082, nullptr, "FlushDataCache"},

View file

@ -4,6 +4,8 @@
#pragma once
#include <cstddef>
#include "common/bit_field.h"
#include "core/hle/service/service.h"
@ -64,6 +66,34 @@ struct InterruptRelayQueue {
static_assert(sizeof(InterruptRelayQueue) == 0x40,
"InterruptRelayQueue struct has incorrect size");
struct FrameBufferInfo {
BitField<0, 1, u32> active_fb; // 0 = first, 1 = second
u32 address_left;
u32 address_right;
u32 stride; // maps to 0x1EF00X90 ?
u32 format; // maps to 0x1EF00X70 ?
u32 shown_fb; // maps to 0x1EF00X78 ?
u32 unknown;
};
static_assert(sizeof(FrameBufferInfo) == 0x1c, "Struct has incorrect size");
struct FrameBufferUpdate {
BitField<0, 1, u8> index; // Index used for GSP::SetBufferSwap
BitField<0, 1, u8> is_dirty; // true if GSP should update GPU framebuffer registers
u16 pad1;
FrameBufferInfo framebuffer_info[2];
u32 pad2;
};
static_assert(sizeof(FrameBufferUpdate) == 0x40, "Struct has incorrect size");
// TODO: Not sure if this padding is correct.
// Chances are the second block is stored at offset 0x24 rather than 0x20.
#ifndef _MSC_VER
static_assert(offsetof(FrameBufferUpdate, framebuffer_info[1]) == 0x20, "FrameBufferInfo element has incorrect alignment");
#endif
/// GSP command
struct Command {
BitField<0, 8, CommandId> id;

View file

@ -42,7 +42,7 @@ struct Regs {
// depending on the current source line to make sure variable names are unique.
#define INSERT_PADDING_WORDS_HELPER1(x, y) x ## y
#define INSERT_PADDING_WORDS_HELPER2(x, y) INSERT_PADDING_WORDS_HELPER1(x, y)
#define INSERT_PADDING_WORDS(num_words) u32 INSERT_PADDING_WORDS_HELPER2(pad, __LINE__)[(num_words)];
#define INSERT_PADDING_WORDS(num_words) u32 INSERT_PADDING_WORDS_HELPER2(pad, __LINE__)[(num_words)]
// helper macro to make sure the defined structures are of the expected size.
#if defined(_MSC_VER)
@ -53,7 +53,7 @@ struct Regs {
#else
#define ASSERT_MEMBER_SIZE(name, size_in_bytes) \
static_assert(sizeof(name) == size_in_bytes, \
"Structure size and register block length don't match");
"Structure size and register block length don't match")
#endif
enum class FramebufferFormat : u32 {

View file

@ -5,6 +5,7 @@ set(SRCS clipper.cpp
utils.cpp
vertex_shader.cpp
video_core.cpp
debug_utils/debug_utils.cpp
renderer_opengl/renderer_opengl.cpp)
set(HEADERS clipper.h
@ -17,6 +18,7 @@ set(HEADERS clipper.h
renderer_base.h
vertex_shader.h
video_core.h
debug_utils/debug_utils.h
renderer_opengl/renderer_opengl.h)
add_library(video_core STATIC ${SRCS} ${HEADERS})

View file

@ -2,12 +2,14 @@
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "clipper.h"
#include "command_processor.h"
#include "math.h"
#include "pica.h"
#include "primitive_assembly.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
namespace Pica {
@ -23,15 +25,24 @@ static u32 uniform_write_buffer[4];
static u32 vs_binary_write_offset = 0;
static u32 vs_swizzle_write_offset = 0;
static inline void WritePicaReg(u32 id, u32 value) {
static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
if (id >= registers.NumIds())
return;
// TODO: Figure out how register masking acts on e.g. vs_uniform_setup.set_value
u32 old_value = registers[id];
registers[id] = value;
registers[id] = (old_value & ~mask) | (value & mask);
DebugUtils::OnPicaRegWrite(id, registers[id]);
switch(id) {
// It seems like these trigger vertex rendering
case PICA_REG_INDEX(trigger_draw):
case PICA_REG_INDEX(trigger_draw_indexed):
{
DebugUtils::DumpTevStageConfig(registers.GetTevStages());
const auto& attribute_config = registers.vertex_attributes;
const u8* const base_address = Memory::GetPointer(attribute_config.GetBaseAddress());
@ -68,6 +79,10 @@ static inline void WritePicaReg(u32 id, u32 value) {
const u16* index_address_16 = (u16*)index_address_8;
bool index_u16 = (bool)index_info.format;
DebugUtils::GeometryDumper geometry_dumper;
PrimitiveAssembler<VertexShader::OutputVertex> clipper_primitive_assembler(registers.triangle_topology.Value());
PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex> dumping_primitive_assembler(registers.triangle_topology.Value());
for (int index = 0; index < registers.num_vertices; ++index)
{
int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index;
@ -95,14 +110,28 @@ static inline void WritePicaReg(u32 id, u32 value) {
input.attr[i][comp].ToFloat32());
}
}
// NOTE: When dumping geometry, we simply assume that the first input attribute
// corresponds to the position for now.
DebugUtils::GeometryDumper::Vertex dumped_vertex = {
input.attr[0][0].ToFloat32(), input.attr[0][1].ToFloat32(), input.attr[0][2].ToFloat32()
};
using namespace std::placeholders;
dumping_primitive_assembler.SubmitVertex(dumped_vertex,
std::bind(&DebugUtils::GeometryDumper::AddTriangle,
&geometry_dumper, _1, _2, _3));
// Send to vertex shader
VertexShader::OutputVertex output = VertexShader::RunShader(input, attribute_config.GetNumTotalAttributes());
if (is_indexed) {
// TODO: Add processed vertex to vertex cache!
}
PrimitiveAssembly::SubmitVertex(output);
// Send to triangle clipper
clipper_primitive_assembler.SubmitVertex(output, Clipper::ProcessTriangle);
}
geometry_dumper.Dump();
break;
}
@ -207,14 +236,17 @@ static std::ptrdiff_t ExecuteCommandBlock(const u32* first_command_word) {
u32* read_pointer = (u32*)first_command_word;
// TODO: Take parameter mask into consideration!
const u32 write_mask = ((header.parameter_mask & 0x1) ? (0xFFu << 0) : 0u) |
((header.parameter_mask & 0x2) ? (0xFFu << 8) : 0u) |
((header.parameter_mask & 0x4) ? (0xFFu << 16) : 0u) |
((header.parameter_mask & 0x8) ? (0xFFu << 24) : 0u);
WritePicaReg(header.cmd_id, *read_pointer);
WritePicaReg(header.cmd_id, *read_pointer, write_mask);
read_pointer += 2;
for (int i = 1; i < 1+header.extra_data_length; ++i) {
u32 cmd = header.cmd_id + ((header.group_commands) ? i : 0);
WritePicaReg(cmd, *read_pointer);
WritePicaReg(cmd, *read_pointer, write_mask);
++read_pointer;
}

View file

@ -17,11 +17,22 @@ union CommandHeader {
u32 hex;
BitField< 0, 16, u32> cmd_id;
// parameter_mask:
// Mask applied to the input value to make it possible to update
// parts of a register without overwriting its other fields.
// first bit: 0x000000FF
// second bit: 0x0000FF00
// third bit: 0x00FF0000
// fourth bit: 0xFF000000
BitField<16, 4, u32> parameter_mask;
BitField<20, 11, u32> extra_data_length;
BitField<31, 1, u32> group_commands;
};
static_assert(std::is_standard_layout<CommandHeader>::value == true, "CommandHeader does not use standard layout");
static_assert(std::is_standard_layout<CommandHeader>::value == true,
"CommandHeader does not use standard layout");
static_assert(sizeof(CommandHeader) == sizeof(u32), "CommandHeader has incorrect size!");
void ProcessCommandList(const u32* list, u32 size);

View file

@ -0,0 +1,522 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include <map>
#include <fstream>
#include <mutex>
#include <string>
#ifdef HAVE_PNG
#include <png.h>
#endif
#include "common/file_util.h"
#include "video_core/pica.h"
#include "debug_utils.h"
namespace Pica {
namespace DebugUtils {
void GeometryDumper::AddTriangle(Vertex& v0, Vertex& v1, Vertex& v2) {
vertices.push_back(v0);
vertices.push_back(v1);
vertices.push_back(v2);
int num_vertices = vertices.size();
faces.push_back({ num_vertices-3, num_vertices-2, num_vertices-1 });
}
void GeometryDumper::Dump() {
// NOTE: Permanently enabling this just trashes the hard disk for no reason.
// Hence, this is currently disabled.
return;
static int index = 0;
std::string filename = std::string("geometry_dump") + std::to_string(++index) + ".obj";
std::ofstream file(filename);
for (const auto& vertex : vertices) {
file << "v " << vertex.pos[0]
<< " " << vertex.pos[1]
<< " " << vertex.pos[2] << std::endl;
}
for (const Face& face : faces) {
file << "f " << 1+face.index[0]
<< " " << 1+face.index[1]
<< " " << 1+face.index[2] << std::endl;
}
}
#pragma pack(1)
struct DVLBHeader {
enum : u32 {
MAGIC_WORD = 0x424C5644, // "DVLB"
};
u32 magic_word;
u32 num_programs;
// u32 dvle_offset_table[];
};
static_assert(sizeof(DVLBHeader) == 0x8, "Incorrect structure size");
struct DVLPHeader {
enum : u32 {
MAGIC_WORD = 0x504C5644, // "DVLP"
};
u32 magic_word;
u32 version;
u32 binary_offset; // relative to DVLP start
u32 binary_size_words;
u32 swizzle_patterns_offset;
u32 swizzle_patterns_num_entries;
u32 unk2;
};
static_assert(sizeof(DVLPHeader) == 0x1C, "Incorrect structure size");
struct DVLEHeader {
enum : u32 {
MAGIC_WORD = 0x454c5644, // "DVLE"
};
enum class ShaderType : u8 {
VERTEX = 0,
GEOMETRY = 1,
};
u32 magic_word;
u16 pad1;
ShaderType type;
u8 pad2;
u32 main_offset_words; // offset within binary blob
u32 endmain_offset_words;
u32 pad3;
u32 pad4;
u32 constant_table_offset;
u32 constant_table_size; // number of entries
u32 label_table_offset;
u32 label_table_size;
u32 output_register_table_offset;
u32 output_register_table_size;
u32 uniform_table_offset;
u32 uniform_table_size;
u32 symbol_table_offset;
u32 symbol_table_size;
};
static_assert(sizeof(DVLEHeader) == 0x40, "Incorrect structure size");
#pragma pack()
void DumpShader(const u32* binary_data, u32 binary_size, const u32* swizzle_data, u32 swizzle_size,
u32 main_offset, const Regs::VSOutputAttributes* output_attributes)
{
// NOTE: Permanently enabling this just trashes hard disks for no reason.
// Hence, this is currently disabled.
return;
struct StuffToWrite {
u8* pointer;
u32 size;
};
std::vector<StuffToWrite> writing_queue;
u32 write_offset = 0;
auto QueueForWriting = [&writing_queue,&write_offset](u8* pointer, u32 size) {
writing_queue.push_back({pointer, size});
u32 old_write_offset = write_offset;
write_offset += size;
return old_write_offset;
};
// First off, try to translate Pica state (one enum for output attribute type and component)
// into shbin format (separate type and component mask).
union OutputRegisterInfo {
enum Type : u64 {
POSITION = 0,
COLOR = 2,
TEXCOORD0 = 3,
TEXCOORD1 = 5,
TEXCOORD2 = 6,
};
BitField< 0, 64, u64> hex;
BitField< 0, 16, Type> type;
BitField<16, 16, u64> id;
BitField<32, 4, u64> component_mask;
};
// This is put into a try-catch block to make sure we notice unknown configurations.
std::vector<OutputRegisterInfo> output_info_table;
for (int i = 0; i < 7; ++i) {
using OutputAttributes = Pica::Regs::VSOutputAttributes;
// TODO: It's still unclear how the attribute components map to the register!
// Once we know that, this code probably will not make much sense anymore.
std::map<OutputAttributes::Semantic, std::pair<OutputRegisterInfo::Type, u32> > map = {
{ OutputAttributes::POSITION_X, { OutputRegisterInfo::POSITION, 1} },
{ OutputAttributes::POSITION_Y, { OutputRegisterInfo::POSITION, 2} },
{ OutputAttributes::POSITION_Z, { OutputRegisterInfo::POSITION, 4} },
{ OutputAttributes::POSITION_W, { OutputRegisterInfo::POSITION, 8} },
{ OutputAttributes::COLOR_R, { OutputRegisterInfo::COLOR, 1} },
{ OutputAttributes::COLOR_G, { OutputRegisterInfo::COLOR, 2} },
{ OutputAttributes::COLOR_B, { OutputRegisterInfo::COLOR, 4} },
{ OutputAttributes::COLOR_A, { OutputRegisterInfo::COLOR, 8} },
{ OutputAttributes::TEXCOORD0_U, { OutputRegisterInfo::TEXCOORD0, 1} },
{ OutputAttributes::TEXCOORD0_V, { OutputRegisterInfo::TEXCOORD0, 2} },
{ OutputAttributes::TEXCOORD1_U, { OutputRegisterInfo::TEXCOORD1, 1} },
{ OutputAttributes::TEXCOORD1_V, { OutputRegisterInfo::TEXCOORD1, 2} },
{ OutputAttributes::TEXCOORD2_U, { OutputRegisterInfo::TEXCOORD2, 1} },
{ OutputAttributes::TEXCOORD2_V, { OutputRegisterInfo::TEXCOORD2, 2} }
};
for (const auto& semantic : std::vector<OutputAttributes::Semantic>{
output_attributes[i].map_x,
output_attributes[i].map_y,
output_attributes[i].map_z,
output_attributes[i].map_w }) {
if (semantic == OutputAttributes::INVALID)
continue;
try {
OutputRegisterInfo::Type type = map.at(semantic).first;
u32 component_mask = map.at(semantic).second;
auto it = std::find_if(output_info_table.begin(), output_info_table.end(),
[&i, &type](const OutputRegisterInfo& info) {
return info.id == i && info.type == type;
}
);
if (it == output_info_table.end()) {
output_info_table.push_back({});
output_info_table.back().type = type;
output_info_table.back().component_mask = component_mask;
output_info_table.back().id = i;
} else {
it->component_mask = it->component_mask | component_mask;
}
} catch (const std::out_of_range& oor) {
_dbg_assert_msg_(GPU, 0, "Unknown output attribute mapping");
ERROR_LOG(GPU, "Unknown output attribute mapping: %03x, %03x, %03x, %03x",
(int)output_attributes[i].map_x.Value(),
(int)output_attributes[i].map_y.Value(),
(int)output_attributes[i].map_z.Value(),
(int)output_attributes[i].map_w.Value());
}
}
}
struct {
DVLBHeader header;
u32 dvle_offset;
} dvlb{ {DVLBHeader::MAGIC_WORD, 1 } }; // 1 DVLE
DVLPHeader dvlp{ DVLPHeader::MAGIC_WORD };
DVLEHeader dvle{ DVLEHeader::MAGIC_WORD };
QueueForWriting((u8*)&dvlb, sizeof(dvlb));
u32 dvlp_offset = QueueForWriting((u8*)&dvlp, sizeof(dvlp));
dvlb.dvle_offset = QueueForWriting((u8*)&dvle, sizeof(dvle));
// TODO: Reduce the amount of binary code written to relevant portions
dvlp.binary_offset = write_offset - dvlp_offset;
dvlp.binary_size_words = binary_size;
QueueForWriting((u8*)binary_data, binary_size * sizeof(u32));
dvlp.swizzle_patterns_offset = write_offset - dvlp_offset;
dvlp.swizzle_patterns_num_entries = swizzle_size;
u32 dummy = 0;
for (int i = 0; i < swizzle_size; ++i) {
QueueForWriting((u8*)&swizzle_data[i], sizeof(swizzle_data[i]));
QueueForWriting((u8*)&dummy, sizeof(dummy));
}
dvle.main_offset_words = main_offset;
dvle.output_register_table_offset = write_offset - dvlb.dvle_offset;
dvle.output_register_table_size = output_info_table.size();
QueueForWriting((u8*)output_info_table.data(), output_info_table.size() * sizeof(OutputRegisterInfo));
// TODO: Create a label table for "main"
// Write data to file
static int dump_index = 0;
std::string filename = std::string("shader_dump") + std::to_string(++dump_index) + std::string(".shbin");
std::ofstream file(filename, std::ios_base::out | std::ios_base::binary);
for (auto& chunk : writing_queue) {
file.write((char*)chunk.pointer, chunk.size);
}
}
static std::unique_ptr<PicaTrace> pica_trace;
static std::mutex pica_trace_mutex;
static int is_pica_tracing = false;
void StartPicaTracing()
{
if (is_pica_tracing) {
ERROR_LOG(GPU, "StartPicaTracing called even though tracing already running!");
return;
}
pica_trace_mutex.lock();
pica_trace = std::unique_ptr<PicaTrace>(new PicaTrace);
is_pica_tracing = true;
pica_trace_mutex.unlock();
}
bool IsPicaTracing()
{
return is_pica_tracing;
}
void OnPicaRegWrite(u32 id, u32 value)
{
// Double check for is_pica_tracing to avoid pointless locking overhead
if (!is_pica_tracing)
return;
std::unique_lock<std::mutex> lock(pica_trace_mutex);
if (!is_pica_tracing)
return;
pica_trace->writes.push_back({id, value});
}
std::unique_ptr<PicaTrace> FinishPicaTracing()
{
if (!is_pica_tracing) {
ERROR_LOG(GPU, "FinishPicaTracing called even though tracing already running!");
return {};
}
// signalize that no further tracing should be performed
is_pica_tracing = false;
// Wait until running tracing is finished
pica_trace_mutex.lock();
std::unique_ptr<PicaTrace> ret(std::move(pica_trace));
pica_trace_mutex.unlock();
return std::move(ret);
}
void DumpTexture(const Pica::Regs::TextureConfig& texture_config, u8* data) {
// NOTE: Permanently enabling this just trashes hard disks for no reason.
// Hence, this is currently disabled.
return;
#ifndef HAVE_PNG
return;
#else
if (!data)
return;
// Write data to file
static int dump_index = 0;
std::string filename = std::string("texture_dump") + std::to_string(++dump_index) + std::string(".png");
u32 row_stride = texture_config.width * 3;
u8* buf;
char title[] = "Citra texture dump";
char title_key[] = "Title";
png_structp png_ptr = nullptr;
png_infop info_ptr = nullptr;
// Open file for writing (binary mode)
File::IOFile fp(filename, "wb");
// Initialize write structure
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (png_ptr == nullptr) {
ERROR_LOG(GPU, "Could not allocate write struct\n");
goto finalise;
}
// Initialize info structure
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == nullptr) {
ERROR_LOG(GPU, "Could not allocate info struct\n");
goto finalise;
}
// Setup Exception handling
if (setjmp(png_jmpbuf(png_ptr))) {
ERROR_LOG(GPU, "Error during png creation\n");
goto finalise;
}
png_init_io(png_ptr, fp.GetHandle());
// Write header (8 bit colour depth)
png_set_IHDR(png_ptr, info_ptr, texture_config.width, texture_config.height,
8, PNG_COLOR_TYPE_RGB /*_ALPHA*/, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
png_text title_text;
title_text.compression = PNG_TEXT_COMPRESSION_NONE;
title_text.key = title_key;
title_text.text = title;
png_set_text(png_ptr, info_ptr, &title_text, 1);
png_write_info(png_ptr, info_ptr);
buf = new u8[row_stride * texture_config.height];
for (int y = 0; y < texture_config.height; ++y) {
for (int x = 0; x < texture_config.width; ++x) {
// Cf. rasterizer code for an explanation of this algorithm.
int texel_index_within_tile = 0;
for (int block_size_index = 0; block_size_index < 3; ++block_size_index) {
int sub_tile_width = 1 << block_size_index;
int sub_tile_height = 1 << block_size_index;
int sub_tile_index = (x & sub_tile_width) << block_size_index;
sub_tile_index += 2 * ((y & sub_tile_height) << block_size_index);
texel_index_within_tile += sub_tile_index;
}
const int block_width = 8;
const int block_height = 8;
int coarse_x = (x / block_width) * block_width;
int coarse_y = (y / block_height) * block_height;
u8* source_ptr = (u8*)data + coarse_x * block_height * 3 + coarse_y * row_stride + texel_index_within_tile * 3;
buf[3 * x + y * row_stride ] = source_ptr[2];
buf[3 * x + y * row_stride + 1] = source_ptr[1];
buf[3 * x + y * row_stride + 2] = source_ptr[0];
}
}
// Write image data
for (auto y = 0; y < texture_config.height; ++y)
{
u8* row_ptr = (u8*)buf + y * row_stride;
u8* ptr = row_ptr;
png_write_row(png_ptr, row_ptr);
}
delete[] buf;
// End write
png_write_end(png_ptr, nullptr);
finalise:
if (info_ptr != nullptr) png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
if (png_ptr != nullptr) png_destroy_write_struct(&png_ptr, (png_infopp)nullptr);
#endif
}
void DumpTevStageConfig(const std::array<Pica::Regs::TevStageConfig,6>& stages)
{
using Source = Pica::Regs::TevStageConfig::Source;
using ColorModifier = Pica::Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Pica::Regs::TevStageConfig::AlphaModifier;
using Operation = Pica::Regs::TevStageConfig::Operation;
std::string stage_info = "Tev setup:\n";
for (int index = 0; index < stages.size(); ++index) {
const auto& tev_stage = stages[index];
const std::map<Source, std::string> source_map = {
{ Source::PrimaryColor, "PrimaryColor" },
{ Source::Texture0, "Texture0" },
{ Source::Constant, "Constant" },
{ Source::Previous, "Previous" },
};
const std::map<ColorModifier, std::string> color_modifier_map = {
{ ColorModifier::SourceColor, { "%source.rgb" } }
};
const std::map<AlphaModifier, std::string> alpha_modifier_map = {
{ AlphaModifier::SourceAlpha, "%source.a" }
};
std::map<Operation, std::string> combiner_map = {
{ Operation::Replace, "%source1" },
{ Operation::Modulate, "(%source1 * %source2) / 255" },
};
auto ReplacePattern =
[](const std::string& input, const std::string& pattern, const std::string& replacement) -> std::string {
size_t start = input.find(pattern);
if (start == std::string::npos)
return input;
std::string ret = input;
ret.replace(start, pattern.length(), replacement);
return ret;
};
auto GetColorSourceStr =
[&source_map,&color_modifier_map,&ReplacePattern](const Source& src, const ColorModifier& modifier) {
auto src_it = source_map.find(src);
std::string src_str = "Unknown";
if (src_it != source_map.end())
src_str = src_it->second;
auto modifier_it = color_modifier_map.find(modifier);
std::string modifier_str = "%source.????";
if (modifier_it != color_modifier_map.end())
modifier_str = modifier_it->second;
return ReplacePattern(modifier_str, "%source", src_str);
};
auto GetColorCombinerStr =
[&](const Regs::TevStageConfig& tev_stage) {
auto op_it = combiner_map.find(tev_stage.color_op);
std::string op_str = "Unknown op (%source1, %source2, %source3)";
if (op_it != combiner_map.end())
op_str = op_it->second;
op_str = ReplacePattern(op_str, "%source1", GetColorSourceStr(tev_stage.color_source1, tev_stage.color_modifier1));
op_str = ReplacePattern(op_str, "%source2", GetColorSourceStr(tev_stage.color_source2, tev_stage.color_modifier2));
return ReplacePattern(op_str, "%source3", GetColorSourceStr(tev_stage.color_source3, tev_stage.color_modifier3));
};
auto GetAlphaSourceStr =
[&source_map,&alpha_modifier_map,&ReplacePattern](const Source& src, const AlphaModifier& modifier) {
auto src_it = source_map.find(src);
std::string src_str = "Unknown";
if (src_it != source_map.end())
src_str = src_it->second;
auto modifier_it = alpha_modifier_map.find(modifier);
std::string modifier_str = "%source.????";
if (modifier_it != alpha_modifier_map.end())
modifier_str = modifier_it->second;
return ReplacePattern(modifier_str, "%source", src_str);
};
auto GetAlphaCombinerStr =
[&](const Regs::TevStageConfig& tev_stage) {
auto op_it = combiner_map.find(tev_stage.alpha_op);
std::string op_str = "Unknown op (%source1, %source2, %source3)";
if (op_it != combiner_map.end())
op_str = op_it->second;
op_str = ReplacePattern(op_str, "%source1", GetAlphaSourceStr(tev_stage.alpha_source1, tev_stage.alpha_modifier1));
op_str = ReplacePattern(op_str, "%source2", GetAlphaSourceStr(tev_stage.alpha_source2, tev_stage.alpha_modifier2));
return ReplacePattern(op_str, "%source3", GetAlphaSourceStr(tev_stage.alpha_source3, tev_stage.alpha_modifier3));
};
stage_info += "Stage " + std::to_string(index) + ": " + GetColorCombinerStr(tev_stage) + " " + GetAlphaCombinerStr(tev_stage) + "\n";
}
DEBUG_LOG(GPU, "%s", stage_info.c_str());
}
} // namespace
} // namespace

View file

@ -0,0 +1,66 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
#include <vector>
#include "video_core/pica.h"
namespace Pica {
namespace DebugUtils {
// Simple utility class for dumping geometry data to an OBJ file
class GeometryDumper {
public:
struct Vertex {
std::array<float,3> pos;
};
void AddTriangle(Vertex& v0, Vertex& v1, Vertex& v2);
void Dump();
private:
struct Face {
int index[3];
};
std::vector<Vertex> vertices;
std::vector<Face> faces;
};
void DumpShader(const u32* binary_data, u32 binary_size, const u32* swizzle_data, u32 swizzle_size,
u32 main_offset, const Regs::VSOutputAttributes* output_attributes);
// Utility class to log Pica commands.
struct PicaTrace {
struct Write : public std::pair<u32,u32> {
Write(u32 id, u32 value) : std::pair<u32,u32>(id, value) {}
u32& Id() { return first; }
const u32& Id() const { return first; }
u32& Value() { return second; }
const u32& Value() const { return second; }
};
std::vector<Write> writes;
};
void StartPicaTracing();
bool IsPicaTracing();
void OnPicaRegWrite(u32 id, u32 value);
std::unique_ptr<PicaTrace> FinishPicaTracing();
void DumpTexture(const Pica::Regs::TextureConfig& texture_config, u8* data);
void DumpTevStageConfig(const std::array<Pica::Regs::TevStageConfig,6>& stages);
} // namespace
} // namespace

View file

@ -18,19 +18,6 @@
class GraphicsDebugger
{
public:
// A few utility structs used to expose data
// A vector of commands represented by their raw byte sequence
struct PicaCommand : public std::vector<u32>
{
const Pica::CommandProcessor::CommandHeader& GetHeader() const
{
const u32& val = at(1);
return *(Pica::CommandProcessor::CommandHeader*)&val;
}
};
typedef std::vector<PicaCommand> PicaCommandList;
// Base class for all objects which need to be notified about GPU events
class DebuggerObserver
{
@ -55,16 +42,6 @@ public:
ERROR_LOG(GSP, "Received command: id=%x", (int)cmd.id.Value());
}
/**
* @param lst command list which triggered this call
* @param is_new true if the command list was called for the first time
* @todo figure out how to make sure called functions don't keep references around beyond their life time
*/
virtual void OnCommandListCalled(const PicaCommandList& lst, bool is_new)
{
ERROR_LOG(GSP, "Command list called: %d", (int)is_new);
}
protected:
const GraphicsDebugger* GetDebugger() const
{
@ -93,49 +70,12 @@ public:
} );
}
void CommandListCalled(u32 address, u32* command_list, u32 size_in_words)
{
if (observers.empty())
return;
PicaCommandList cmdlist;
for (u32* parse_pointer = command_list; parse_pointer < command_list + size_in_words;)
{
const Pica::CommandProcessor::CommandHeader& header = *(Pica::CommandProcessor::CommandHeader*)(&parse_pointer[1]);
cmdlist.push_back(PicaCommand());
auto& cmd = cmdlist.back();
size_t size = 2 + header.extra_data_length;
size = (size + 1) / 2 * 2; // align to 8 bytes
cmd.reserve(size);
std::copy(parse_pointer, parse_pointer + size, std::back_inserter(cmd));
parse_pointer += size;
}
auto obj = std::pair<u32,PicaCommandList>(address, cmdlist);
auto it = std::find(command_lists.begin(), command_lists.end(), obj);
bool is_new = (it == command_lists.end());
if (is_new)
command_lists.push_back(obj);
ForEachObserver([&](DebuggerObserver* observer) {
observer->OnCommandListCalled(obj.second, is_new);
} );
}
const GSP_GPU::Command& ReadGXCommandHistory(int index) const
{
// TODO: Is this thread-safe?
return gx_command_history[index];
}
const std::vector<std::pair<u32,PicaCommandList>>& GetCommandLists() const
{
return command_lists;
}
void RegisterObserver(DebuggerObserver* observer)
{
// TODO: Check for duplicates
@ -158,7 +98,4 @@ private:
std::vector<DebuggerObserver*> observers;
std::vector<GSP_GPU::Command> gx_command_history;
// vector of pairs of command lists and their storage address
std::vector<std::pair<u32,PicaCommandList>> command_lists;
};

View file

@ -39,13 +39,19 @@ template<typename T> class Vec2;
template<typename T> class Vec3;
template<typename T> class Vec4;
template<typename T>
static inline Vec2<T> MakeVec(const T& x, const T& y);
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z);
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w);
template<typename T>
class Vec2 {
public:
struct {
T x,y;
};
T x;
T y;
T* AsArray() { return &x; }
@ -68,34 +74,34 @@ public:
a[0] = x; a[1] = y;
}
Vec2 operator +(const Vec2& other) const
Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const
{
return Vec2(x+other.x, y+other.y);
return MakeVec(x+other.x, y+other.y);
}
void operator += (const Vec2 &other)
{
x+=other.x; y+=other.y;
}
Vec2 operator -(const Vec2& other) const
Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const
{
return Vec2(x-other.x, y-other.y);
return MakeVec(x-other.x, y-other.y);
}
void operator -= (const Vec2& other)
{
x-=other.x; y-=other.y;
}
Vec2 operator -() const
Vec2<decltype(-T{})> operator -() const
{
return Vec2(-x,-y);
return MakeVec(-x,-y);
}
Vec2 operator * (const Vec2& other) const
Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const
{
return Vec2(x*other.x, y*other.y);
return MakeVec(x*other.x, y*other.y);
}
template<typename V>
Vec2 operator * (const V& f) const
Vec2<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec2(x*f,y*f);
return MakeVec(x*f,y*f);
}
template<typename V>
void operator *= (const V& f)
@ -103,9 +109,9 @@ public:
x*=f; y*=f;
}
template<typename V>
Vec2 operator / (const V& f) const
Vec2<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec2(x/f,y/f);
return MakeVec(x/f,y/f);
}
template<typename V>
void operator /= (const V& f)
@ -152,20 +158,9 @@ public:
const T& t() const { return y; }
// swizzlers - create a subvector of specific components
Vec2 yx() const { return Vec2(y, x); }
Vec2 vu() const { return Vec2(y, x); }
Vec2 ts() const { return Vec2(y, x); }
// Inserters to add new elements to effectively create larger vectors containing this Vec2
Vec3<T> InsertBeforeX(const T& value) {
return Vec3<T>(value, x, y);
}
Vec3<T> InsertBeforeY(const T& value) {
return Vec3<T>(x, value, y);
}
Vec3<T> Append(const T& value) {
return Vec3<T>(x, y, value);
}
const Vec2 yx() const { return Vec2(y, x); }
const Vec2 vu() const { return Vec2(y, x); }
const Vec2 ts() const { return Vec2(y, x); }
};
template<typename T, typename V>
@ -180,10 +175,9 @@ template<typename T>
class Vec3
{
public:
struct
{
T x,y,z;
};
T x;
T y;
T z;
T* AsArray() { return &x; }
@ -193,7 +187,7 @@ public:
template<typename T2>
Vec3<T2> Cast() const {
return Vec3<T2>((T2)x, (T2)y, (T2)z);
return MakeVec<T2>((T2)x, (T2)y, (T2)z);
}
// Only implemented for T=int and T=float
@ -202,7 +196,7 @@ public:
static Vec3 AssignToAll(const T& f)
{
return Vec3<T>(f, f, f);
return MakeVec(f, f, f);
}
void Write(T a[3])
@ -210,34 +204,34 @@ public:
a[0] = x; a[1] = y; a[2] = z;
}
Vec3 operator +(const Vec3 &other) const
Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const
{
return Vec3(x+other.x, y+other.y, z+other.z);
return MakeVec(x+other.x, y+other.y, z+other.z);
}
void operator += (const Vec3 &other)
{
x+=other.x; y+=other.y; z+=other.z;
}
Vec3 operator -(const Vec3 &other) const
Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const
{
return Vec3(x-other.x, y-other.y, z-other.z);
return MakeVec(x-other.x, y-other.y, z-other.z);
}
void operator -= (const Vec3 &other)
{
x-=other.x; y-=other.y; z-=other.z;
}
Vec3 operator -() const
Vec3<decltype(-T{})> operator -() const
{
return Vec3(-x,-y,-z);
return MakeVec(-x,-y,-z);
}
Vec3 operator * (const Vec3 &other) const
Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const
{
return Vec3(x*other.x, y*other.y, z*other.z);
return MakeVec(x*other.x, y*other.y, z*other.z);
}
template<typename V>
Vec3 operator * (const V& f) const
Vec3<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec3(x*f,y*f,z*f);
return MakeVec(x*f,y*f,z*f);
}
template<typename V>
void operator *= (const V& f)
@ -245,9 +239,9 @@ public:
x*=f; y*=f; z*=f;
}
template<typename V>
Vec3 operator / (const V& f) const
Vec3<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec3(x/f,y/f,z/f);
return MakeVec(x/f,y/f,z/f);
}
template<typename V>
void operator /= (const V& f)
@ -310,7 +304,7 @@ public:
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
@ -319,27 +313,13 @@ public:
_DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2); \
_DEFINE_SWIZZLER2(b, a, b3##a3); \
_DEFINE_SWIZZLER2(b, a, b4##a4);
_DEFINE_SWIZZLER2(b, a, b4##a4)
DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t);
DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q);
DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
// Inserters to add new elements to effectively create larger vectors containing this Vec2
Vec4<T> InsertBeforeX(const T& value) {
return Vec4<T>(value, x, y, z);
}
Vec4<T> InsertBeforeY(const T& value) {
return Vec4<T>(x, value, y, z);
}
Vec4<T> InsertBeforeZ(const T& value) {
return Vec4<T>(x, y, value, z);
}
Vec4<T> Append(const T& value) {
return Vec4<T>(x, y, z, value);
}
};
template<typename T, typename V>
@ -348,16 +328,27 @@ Vec3<T> operator * (const V& f, const Vec3<T>& vec)
return Vec3<T>(f*vec.x,f*vec.y,f*vec.z);
}
template<>
inline float Vec3<float>::Length() const {
return std::sqrt(x * x + y * y + z * z);
}
template<>
inline Vec3<float> Vec3<float>::Normalized() const {
return *this / Length();
}
typedef Vec3<float> Vec3f;
template<typename T>
class Vec4
{
public:
struct
{
T x,y,z,w;
};
T x;
T y;
T z;
T w;
T* AsArray() { return &x; }
@ -383,34 +374,34 @@ public:
a[0] = x; a[1] = y; a[2] = z; a[3] = w;
}
Vec4 operator +(const Vec4& other) const
Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const
{
return Vec4(x+other.x, y+other.y, z+other.z, w+other.w);
return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w);
}
void operator += (const Vec4& other)
{
x+=other.x; y+=other.y; z+=other.z; w+=other.w;
}
Vec4 operator -(const Vec4 &other) const
Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const
{
return Vec4(x-other.x, y-other.y, z-other.z, w-other.w);
return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w);
}
void operator -= (const Vec4 &other)
{
x-=other.x; y-=other.y; z-=other.z; w-=other.w;
}
Vec4 operator -() const
Vec4<decltype(-T{})> operator -() const
{
return Vec4(-x,-y,-z,-w);
return MakeVec(-x,-y,-z,-w);
}
Vec4 operator * (const Vec4 &other) const
Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const
{
return Vec4(x*other.x, y*other.y, z*other.z, w*other.w);
return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w);
}
template<typename V>
Vec4 operator * (const V& f) const
Vec4<decltype(T{}*V{})> operator * (const V& f) const
{
return Vec4(x*f,y*f,z*f,w*f);
return MakeVec(x*f,y*f,z*f,w*f);
}
template<typename V>
void operator *= (const V& f)
@ -418,9 +409,9 @@ public:
x*=f; y*=f; z*=f; w*=f;
}
template<typename V>
Vec4 operator / (const V& f) const
Vec4<decltype(T{}/V{})> operator / (const V& f) const
{
return Vec4(x/f,y/f,z/f,w/f);
return MakeVec(x/f,y/f,z/f,w/f);
}
template<typename V>
void operator /= (const V& f)
@ -469,12 +460,12 @@ public:
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
_DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2);
_DEFINE_SWIZZLER2(b, a, b2##a2)
DEFINE_SWIZZLER2(x, y, r, g);
DEFINE_SWIZZLER2(x, z, r, b);
@ -485,7 +476,7 @@ public:
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
#define _DEFINE_SWIZZLER3(a, b, c, name) Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \
_DEFINE_SWIZZLER3(a, b, c, a##b##c); \
_DEFINE_SWIZZLER3(a, c, b, a##c##b); \
@ -498,7 +489,7 @@ public:
_DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
_DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
_DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2);
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2)
DEFINE_SWIZZLER3(x, y, z, r, g, b);
DEFINE_SWIZZLER3(x, y, w, r, g, a);
@ -510,69 +501,121 @@ public:
template<typename T, typename V>
Vec4<T> operator * (const V& f, const Vec4<T>& vec)
Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec)
{
return Vec4<T>(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
}
typedef Vec4<float> Vec4f;
template<typename T>
static inline T Dot(const Vec2<T>& a, const Vec2<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b)
{
return a.x*b.x + a.y*b.y;
}
template<typename T>
static inline T Dot(const Vec3<T>& a, const Vec3<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
template<typename T>
static inline T Dot(const Vec4<T>& a, const Vec4<T>& b)
static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
template<typename T>
static inline Vec3<T> Cross(const Vec3<T>& a, const Vec3<T>& b)
static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b)
{
return Vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}
// linear interpolation via float: 0.0=begin, 1.0=end
template<typename X>
static inline X Lerp(const X& begin, const X& end, const float t)
static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t)
{
return begin*(1.f-t) + end*t;
}
// linear interpolation via int: 0=begin, base=end
template<typename X, int base>
static inline X LerpInt(const X& begin, const X& end, const int t)
static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t)
{
return (begin*(base-t) + end*t) / base;
}
// Utility vector factories
template<typename T>
static inline Vec2<T> MakeVec2(const T& x, const T& y)
static inline Vec2<T> MakeVec(const T& x, const T& y)
{
return Vec2<T>{x, y};
}
template<typename T>
static inline Vec3<T> MakeVec3(const T& x, const T& y, const T& z)
static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z)
{
return Vec3<T>{x, y, z};
}
template<typename T>
static inline Vec4<T> MakeVec4(const T& x, const T& y, const T& z, const T& w)
static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw)
{
return MakeVec(x, y, zw[0], zw[1]);
}
template<typename T>
static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z)
{
return MakeVec(xy[0], xy[1], z);
}
template<typename T>
static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz)
{
return MakeVec(x, yz[0], yz[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w)
{
return Vec4<T>{x, y, z, w};
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w)
{
return MakeVec(xy[0], xy[1], z, w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w)
{
return MakeVec(x, yz[0], yz[1], w);
}
// NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)".
// Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error
// out soon enough due to misuse of the returned structure.
template<typename T>
static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw)
{
return MakeVec(xy[0], xy[1], zw[0], zw[1]);
}
template<typename T>
static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w)
{
return MakeVec(xyz[0], xyz[1], xyz[2], w);
}
template<typename T>
static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yzw)
{
return MakeVec(x, yzw[0], yzw[1], yzw[2]);
}
} // namespace

View file

@ -4,6 +4,7 @@
#pragma once
#include <array>
#include <cstddef>
#include <initializer_list>
#include <map>
@ -57,7 +58,7 @@ struct Regs {
INSERT_PADDING_WORDS(0x1);
union {
union VSOutputAttributes {
// Maps components of output vertex attributes to semantics
enum Semantic : u32
{
@ -94,7 +95,137 @@ struct Regs {
BitField<16, 16, u32> y;
} viewport_corner;
INSERT_PADDING_WORDS(0xa7);
INSERT_PADDING_WORDS(0x17);
struct TextureConfig {
INSERT_PADDING_WORDS(0x1);
union {
BitField< 0, 16, u32> height;
BitField<16, 16, u32> width;
};
INSERT_PADDING_WORDS(0x2);
u32 address;
u32 GetPhysicalAddress() {
return DecodeAddressRegister(address) - Memory::FCRAM_PADDR + Memory::HEAP_GSP_VADDR;
}
// texture1 and texture2 store the texture format directly after the address
// whereas texture0 inserts some additional flags inbetween.
// Hence, we store the format separately so that all other parameters can be described
// in a single structure.
};
enum class TextureFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGBA5551 = 2,
RGB565 = 3,
RGBA4 = 4,
// TODO: Support for the other formats is not implemented, yet.
// Seems like they are luminance formats and compressed textures.
};
BitField<0, 1, u32> texturing_enable;
TextureConfig texture0;
INSERT_PADDING_WORDS(0x8);
BitField<0, 4, TextureFormat> texture0_format;
INSERT_PADDING_WORDS(0x31);
// 0xc0-0xff: Texture Combiner (akin to glTexEnv)
struct TevStageConfig {
enum class Source : u32 {
PrimaryColor = 0x0,
Texture0 = 0x3,
Texture1 = 0x4,
Texture2 = 0x5,
Texture3 = 0x6,
// 0x7-0xc = primary color??
Constant = 0xe,
Previous = 0xf,
};
enum class ColorModifier : u32 {
SourceColor = 0,
OneMinusSourceColor = 1,
SourceAlpha = 2,
OneMinusSourceAlpha = 3,
// Other values seem to be non-standard extensions
};
enum class AlphaModifier : u32 {
SourceAlpha = 0,
OneMinusSourceAlpha = 1,
// Other values seem to be non-standard extensions
};
enum class Operation : u32 {
Replace = 0,
Modulate = 1,
Add = 2,
AddSigned = 3,
Lerp = 4,
Subtract = 5,
};
union {
BitField< 0, 4, Source> color_source1;
BitField< 4, 4, Source> color_source2;
BitField< 8, 4, Source> color_source3;
BitField<16, 4, Source> alpha_source1;
BitField<20, 4, Source> alpha_source2;
BitField<24, 4, Source> alpha_source3;
};
union {
BitField< 0, 4, ColorModifier> color_modifier1;
BitField< 4, 4, ColorModifier> color_modifier2;
BitField< 8, 4, ColorModifier> color_modifier3;
BitField<12, 3, AlphaModifier> alpha_modifier1;
BitField<16, 3, AlphaModifier> alpha_modifier2;
BitField<20, 3, AlphaModifier> alpha_modifier3;
};
union {
BitField< 0, 4, Operation> color_op;
BitField<16, 4, Operation> alpha_op;
};
union {
BitField< 0, 8, u32> const_r;
BitField< 8, 8, u32> const_g;
BitField<16, 8, u32> const_b;
BitField<24, 8, u32> const_a;
};
INSERT_PADDING_WORDS(0x1);
};
TevStageConfig tev_stage0;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage1;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage2;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage3;
INSERT_PADDING_WORDS(0x13);
TevStageConfig tev_stage4;
INSERT_PADDING_WORDS(0x3);
TevStageConfig tev_stage5;
INSERT_PADDING_WORDS(0x13);
const std::array<Regs::TevStageConfig,6> GetTevStages() const {
return { tev_stage0, tev_stage1,
tev_stage2, tev_stage3,
tev_stage4, tev_stage5 };
};
struct {
enum ColorFormat : u32 {
@ -403,6 +534,15 @@ struct Regs {
ADD_FIELD(viewport_depth_range);
ADD_FIELD(viewport_depth_far_plane);
ADD_FIELD(viewport_corner);
ADD_FIELD(texturing_enable);
ADD_FIELD(texture0);
ADD_FIELD(texture0_format);
ADD_FIELD(tev_stage0);
ADD_FIELD(tev_stage1);
ADD_FIELD(tev_stage2);
ADD_FIELD(tev_stage3);
ADD_FIELD(tev_stage4);
ADD_FIELD(tev_stage5);
ADD_FIELD(framebuffer);
ADD_FIELD(vertex_attributes);
ADD_FIELD(index_array);
@ -460,6 +600,15 @@ ASSERT_REG_POSITION(viewport_depth_far_plane, 0x4e);
ASSERT_REG_POSITION(vs_output_attributes[0], 0x50);
ASSERT_REG_POSITION(vs_output_attributes[1], 0x51);
ASSERT_REG_POSITION(viewport_corner, 0x68);
ASSERT_REG_POSITION(texturing_enable, 0x80);
ASSERT_REG_POSITION(texture0, 0x81);
ASSERT_REG_POSITION(texture0_format, 0x8e);
ASSERT_REG_POSITION(tev_stage0, 0xc0);
ASSERT_REG_POSITION(tev_stage1, 0xc8);
ASSERT_REG_POSITION(tev_stage2, 0xd0);
ASSERT_REG_POSITION(tev_stage3, 0xd8);
ASSERT_REG_POSITION(tev_stage4, 0xf0);
ASSERT_REG_POSITION(tev_stage5, 0xf8);
ASSERT_REG_POSITION(framebuffer, 0x110);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);

View file

@ -2,21 +2,23 @@
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "clipper.h"
#include "pica.h"
#include "primitive_assembly.h"
#include "vertex_shader.h"
#include "video_core/debug_utils/debug_utils.h"
namespace Pica {
namespace PrimitiveAssembly {
template<typename VertexType>
PrimitiveAssembler<VertexType>::PrimitiveAssembler(Regs::TriangleTopology topology)
: topology(topology), buffer_index(0) {
}
static OutputVertex buffer[2];
static int buffer_index = 0; // TODO: reset this on emulation restart
void SubmitVertex(OutputVertex& vtx)
template<typename VertexType>
void PrimitiveAssembler<VertexType>::SubmitVertex(VertexType& vtx, TriangleHandler triangle_handler)
{
switch (registers.triangle_topology) {
switch (topology) {
case Regs::TriangleTopology::List:
case Regs::TriangleTopology::ListIndexed:
if (buffer_index < 2) {
@ -24,7 +26,7 @@ void SubmitVertex(OutputVertex& vtx)
} else {
buffer_index = 0;
Clipper::ProcessTriangle(buffer[0], buffer[1], vtx);
triangle_handler(buffer[0], buffer[1], vtx);
}
break;
@ -32,7 +34,7 @@ void SubmitVertex(OutputVertex& vtx)
if (buffer_index == 2) {
buffer_index = 0;
Clipper::ProcessTriangle(buffer[0], buffer[1], vtx);
triangle_handler(buffer[0], buffer[1], vtx);
buffer[1] = vtx;
} else {
@ -41,11 +43,15 @@ void SubmitVertex(OutputVertex& vtx)
break;
default:
ERROR_LOG(GPU, "Unknown triangle mode %x:", (int)registers.triangle_topology.Value());
ERROR_LOG(GPU, "Unknown triangle topology %x:", (int)topology);
break;
}
}
} // namespace
// explicitly instantiate use cases
template
struct PrimitiveAssembler<VertexShader::OutputVertex>;
template
struct PrimitiveAssembler<DebugUtils::GeometryDumper::Vertex>;
} // namespace

View file

@ -4,18 +4,40 @@
#pragma once
#include <functional>
#include "video_core/pica.h"
#include "video_core/vertex_shader.h"
namespace Pica {
namespace VertexShader {
struct OutputVertex;
}
/*
* Utility class to build triangles from a series of vertices,
* according to a given triangle topology.
*/
template<typename VertexType>
struct PrimitiveAssembler {
using TriangleHandler = std::function<void(VertexType& v0,
VertexType& v1,
VertexType& v2)>;
namespace PrimitiveAssembly {
PrimitiveAssembler(Regs::TriangleTopology topology);
using VertexShader::OutputVertex;
/*
* Queues a vertex, builds primitives from the vertex queue according to the given
* triangle topology, and calls triangle_handler for each generated primitive.
* NOTE: We could specify the triangle handler in the constructor, but this way we can
* keep event and handler code next to each other.
*/
void SubmitVertex(VertexType& vtx, TriangleHandler triangle_handler);
private:
Regs::TriangleTopology topology;
int buffer_index;
VertexType buffer[2];
};
void SubmitVertex(OutputVertex& vtx);
} // namespace
} // namespace

View file

@ -11,6 +11,8 @@
#include "rasterizer.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
namespace Pica {
namespace Rasterizer {
@ -78,10 +80,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x = min_x & Fix12P4::IntMask();
min_y = min_y & Fix12P4::IntMask();
max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();
min_x &= Fix12P4::IntMask();
min_y &= Fix12P4::IntMask();
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
@ -112,10 +114,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Cross(vec1, vec2).z;
return Math::Cross(vec1, vec2).z;
};
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
@ -143,15 +145,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);
@ -165,12 +167,196 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
};
Math::Vec4<u8> texture_color{};
float24 u = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
float24 v = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
if (registers.texturing_enable) {
// Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each
// of which is composed of four 2x2 subtiles each of which is composed of four texels.
// Each structure is embedded into the next-bigger one in a diagonal pattern, e.g.
// texels are laid out in a 2x2 subtile like this:
// 2 3
// 0 1
//
// The full 8x8 tile has the texels arranged like this:
//
// 42 43 46 47 58 59 62 63
// 40 41 44 45 56 57 60 61
// 34 35 38 39 50 51 54 55
// 32 33 36 37 48 49 52 53
// 10 11 14 15 26 27 30 31
// 08 09 12 13 24 25 28 29
// 02 03 06 07 18 19 22 23
// 00 01 04 05 16 17 20 21
// TODO: This is currently hardcoded for RGB8
u32* texture_data = (u32*)Memory::GetPointer(registers.texture0.GetPhysicalAddress());
// TODO(neobrain): Not sure if this swizzling pattern is used for all textures.
// To be flexible in case different but similar patterns are used, we keep this
// somewhat inefficient code around for now.
int s = (int)(u * float24::FromFloat32(registers.texture0.width)).ToFloat32();
int t = (int)(v * float24::FromFloat32(registers.texture0.height)).ToFloat32();
int texel_index_within_tile = 0;
for (int block_size_index = 0; block_size_index < 3; ++block_size_index) {
int sub_tile_width = 1 << block_size_index;
int sub_tile_height = 1 << block_size_index;
int sub_tile_index = (s & sub_tile_width) << block_size_index;
sub_tile_index += 2 * ((t & sub_tile_height) << block_size_index);
texel_index_within_tile += sub_tile_index;
}
const int block_width = 8;
const int block_height = 8;
int coarse_s = (s / block_width) * block_width;
int coarse_t = (t / block_height) * block_height;
const int row_stride = registers.texture0.width * 3;
u8* source_ptr = (u8*)texture_data + coarse_s * block_height * 3 + coarse_t * row_stride + texel_index_within_tile * 3;
texture_color.r() = source_ptr[2];
texture_color.g() = source_ptr[1];
texture_color.b() = source_ptr[0];
texture_color.a() = 0xFF;
DebugUtils::DumpTexture(registers.texture0, (u8*)texture_data);
}
// Texture environment - consists of 6 stages of color and alpha combining.
//
// Color combiners take three input color values from some source (e.g. interpolated
// vertex color, texture color, previous stage, etc), perform some very simple
// operations on each of them (e.g. inversion) and then calculate the output color
// with some basic arithmetic. Alpha combiners can be configured separately but work
// analogously.
Math::Vec4<u8> combiner_output;
for (auto tev_stage : registers.GetTevStages()) {
using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Regs::TevStageConfig::AlphaModifier;
using Operation = Regs::TevStageConfig::Operation;
auto GetColorSource = [&](Source source) -> Math::Vec3<u8> {
switch (source) {
case Source::PrimaryColor:
return primary_color.rgb();
case Source::Texture0:
return texture_color.rgb();
case Source::Constant:
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b};
case Source::Previous:
return combiner_output.rgb();
default:
ERROR_LOG(GPU, "Unknown color combiner source %d\n", (int)source);
return {};
}
};
auto GetAlphaSource = [&](Source source) -> u8 {
switch (source) {
case Source::PrimaryColor:
return primary_color.a();
case Source::Texture0:
return texture_color.a();
case Source::Constant:
return tev_stage.const_a;
case Source::Previous:
return combiner_output.a();
default:
ERROR_LOG(GPU, "Unknown alpha combiner source %d\n", (int)source);
return 0;
}
};
auto GetColorModifier = [](ColorModifier factor, const Math::Vec3<u8>& values) -> Math::Vec3<u8> {
switch (factor)
{
case ColorModifier::SourceColor:
return values;
default:
ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor);
return {};
}
};
auto GetAlphaModifier = [](AlphaModifier factor, u8 value) -> u8 {
switch (factor) {
case AlphaModifier::SourceAlpha:
return value;
default:
ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor);
return 0;
}
};
auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return ((input[0] * input[1]) / 255).Cast<u8>();
default:
ERROR_LOG(GPU, "Unknown color combiner operation %d\n", (int)op);
return {};
}
};
auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return input[0] * input[1] / 255;
default:
ERROR_LOG(GPU, "Unknown alpha combiner operation %d\n", (int)op);
return 0;
}
};
// color combiner
// NOTE: Not sure if the alpha combiner might use the color output of the previous
// stage as input. Hence, we currently don't directly write the result to
// combiner_output.rgb(), but instead store it in a temporary variable until
// alpha combining has been done.
Math::Vec3<u8> color_result[3] = {
GetColorModifier(tev_stage.color_modifier1, GetColorSource(tev_stage.color_source1)),
GetColorModifier(tev_stage.color_modifier2, GetColorSource(tev_stage.color_source2)),
GetColorModifier(tev_stage.color_modifier3, GetColorSource(tev_stage.color_source3))
};
auto color_output = ColorCombine(tev_stage.color_op, color_result);
// alpha combiner
std::array<u8,3> alpha_result = {
GetAlphaModifier(tev_stage.alpha_modifier1, GetAlphaSource(tev_stage.alpha_source1)),
GetAlphaModifier(tev_stage.alpha_modifier2, GetAlphaSource(tev_stage.alpha_source2)),
GetAlphaModifier(tev_stage.alpha_modifier3, GetAlphaSource(tev_stage.alpha_source3))
};
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
combiner_output = Math::MakeVec(color_output, alpha_output);
}
// TODO: Not sure if the multiplication by 65535 has already been taken care
// of when transforming to screen coordinates or not.
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
(float)v1.screenpos[2].ToFloat32() * w1 +
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum);
SetDepth(x >> 4, y >> 4, z);
DrawPixel(x >> 4, y >> 4, primary_color);
DrawPixel(x >> 4, y >> 4, combiner_output);
}
}
}

View file

@ -4,6 +4,7 @@
#include "pica.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
#include <core/mem_map.h>
#include <common/file_util.h>
@ -50,6 +51,11 @@ struct VertexShaderState {
};
u32 call_stack[8]; // TODO: What is the maximal call stack depth?
u32* call_stack_pointer;
struct {
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
} debug;
};
static void ProcessShaderCode(VertexShaderState& state) {
@ -57,27 +63,34 @@ static void ProcessShaderCode(VertexShaderState& state) {
bool increment_pc = true;
bool exit_loop = false;
const Instruction& instr = *(const Instruction*)state.program_counter;
state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + (state.program_counter - shader_memory));
const float24* src1_ = (instr.common.src1 < 0x10) ? state.input_register_table[instr.common.src1]
: (instr.common.src1 < 0x20) ? &state.temporary_registers[instr.common.src1-0x10].x
: (instr.common.src1 < 0x80) ? &shader_uniforms.f[instr.common.src1-0x20].x
: nullptr;
const float24* src2_ = (instr.common.src2 < 0x10) ? state.input_register_table[instr.common.src2]
: &state.temporary_registers[instr.common.src2-0x10].x;
// TODO: Unsure about the limit values
float24* dest = (instr.common.dest <= 0x1C) ? state.output_register_table[instr.common.dest]
: (instr.common.dest <= 0x3C) ? nullptr
: (instr.common.dest <= 0x7C) ? &state.temporary_registers[(instr.common.dest-0x40)/4][instr.common.dest%4]
const float24* src1_ = (instr.common.src1 < 0x10) ? state.input_register_table[instr.common.src1.GetIndex()]
: (instr.common.src1 < 0x20) ? &state.temporary_registers[instr.common.src1.GetIndex()].x
: (instr.common.src1 < 0x80) ? &shader_uniforms.f[instr.common.src1.GetIndex()].x
: nullptr;
const float24* src2_ = (instr.common.src2 < 0x10) ? state.input_register_table[instr.common.src2.GetIndex()]
: &state.temporary_registers[instr.common.src2.GetIndex()].x;
float24* dest = (instr.common.dest < 0x08) ? state.output_register_table[4*instr.common.dest.GetIndex()]
: (instr.common.dest < 0x10) ? nullptr
: (instr.common.dest < 0x20) ? &state.temporary_registers[instr.common.dest.GetIndex()][0]
: nullptr;
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
const bool negate_src1 = swizzle.negate;
const float24 src1[4] = {
float24 src1[4] = {
src1_[(int)swizzle.GetSelectorSrc1(0)],
src1_[(int)swizzle.GetSelectorSrc1(1)],
src1_[(int)swizzle.GetSelectorSrc1(2)],
src1_[(int)swizzle.GetSelectorSrc1(3)],
};
if (negate_src1) {
src1[0] = src1[0] * float24::FromFloat32(-1);
src1[1] = src1[1] * float24::FromFloat32(-1);
src1[2] = src1[2] * float24::FromFloat32(-1);
src1[3] = src1[3] * float24::FromFloat32(-1);
}
const float24 src2[4] = {
src2_[(int)swizzle.GetSelectorSrc2(0)],
src2_[(int)swizzle.GetSelectorSrc2(1)],
@ -88,6 +101,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
switch (instr.opcode) {
case Instruction::OpCode::ADD:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
@ -100,6 +114,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
case Instruction::OpCode::MUL:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
@ -113,6 +128,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
case Instruction::OpCode::DP3:
case Instruction::OpCode::DP4:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
float24 dot = float24::FromFloat32(0.f);
int num_components = (instr.opcode == Instruction::OpCode::DP3) ? 3 : 4;
for (int i = 0; i < num_components; ++i)
@ -130,6 +146,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
// Reciprocal
case Instruction::OpCode::RCP:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
@ -145,6 +162,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
// Reciprocal Square Root
case Instruction::OpCode::RSQ:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
@ -159,6 +177,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
case Instruction::OpCode::MOV:
{
state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
for (int i = 0; i < 4; ++i) {
if (!swizzle.DestComponentEnabled(i))
continue;
@ -172,8 +191,9 @@ static void ProcessShaderCode(VertexShaderState& state) {
if (*state.call_stack_pointer == VertexShaderState::INVALID_ADDRESS) {
exit_loop = true;
} else {
state.program_counter = &shader_memory[*state.call_stack_pointer--];
*state.call_stack_pointer = VertexShaderState::INVALID_ADDRESS;
// Jump back to call stack position, invalidate call stack entry, move up call stack pointer
state.program_counter = &shader_memory[*state.call_stack_pointer];
*state.call_stack_pointer-- = VertexShaderState::INVALID_ADDRESS;
}
break;
@ -212,6 +232,8 @@ OutputVertex RunShader(const InputVertex& input, int num_attributes)
const u32* main = &shader_memory[registers.vs_main_offset];
state.program_counter = (u32*)main;
state.debug.max_offset = 0;
state.debug.max_opdesc_id = 0;
// Setup input register table
const auto& attribute_register_map = registers.vs_input_register_map;
@ -255,6 +277,9 @@ OutputVertex RunShader(const InputVertex& input, int num_attributes)
state.call_stack_pointer = &state.call_stack[0];
ProcessShaderCode(state);
DebugUtils::DumpShader(shader_memory, state.debug.max_offset, swizzle_data,
state.debug.max_opdesc_id, registers.vs_main_offset,
registers.vs_output_attributes);
DEBUG_LOG(GPU, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),

View file

@ -27,7 +27,6 @@ struct OutputVertex {
Math::Vec4<float24> dummy; // quaternions (not implemented, yet)
Math::Vec4<float24> color;
Math::Vec2<float24> tc0;
float24 tc0_v;
// Padding for optimal alignment
float24 pad[14];
@ -36,6 +35,7 @@ struct OutputVertex {
// position after perspective divide
Math::Vec3<float24> screenpos;
float24 pad2;
// Linear interpolation
// factor: 0=this, 1=vtx
@ -59,6 +59,7 @@ struct OutputVertex {
}
};
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
union Instruction {
enum class OpCode : u32 {
@ -117,9 +118,78 @@ union Instruction {
// while "dest" addresses individual floats.
union {
BitField<0x00, 0x5, u32> operand_desc_id;
BitField<0x07, 0x5, u32> src2;
BitField<0x0c, 0x7, u32> src1;
BitField<0x13, 0x7, u32> dest;
template<class BitFieldType>
struct SourceRegister : BitFieldType {
enum RegisterType {
Input,
Temporary,
FloatUniform
};
RegisterType GetRegisterType() const {
if (BitFieldType::Value() < 0x10)
return Input;
else if (BitFieldType::Value() < 0x20)
return Temporary;
else
return FloatUniform;
}
int GetIndex() const {
if (GetRegisterType() == Input)
return BitFieldType::Value();
else if (GetRegisterType() == Temporary)
return BitFieldType::Value() - 0x10;
else if (GetRegisterType() == FloatUniform)
return BitFieldType::Value() - 0x20;
}
std::string GetRegisterName() const {
std::map<RegisterType, std::string> type = {
{ Input, "i" },
{ Temporary, "t" },
{ FloatUniform, "f" },
};
return type[GetRegisterType()] + std::to_string(GetIndex());
}
};
SourceRegister<BitField<0x07, 0x5, u32>> src2;
SourceRegister<BitField<0x0c, 0x7, u32>> src1;
struct : BitField<0x15, 0x5, u32>
{
enum RegisterType {
Output,
Temporary,
Unknown
};
RegisterType GetRegisterType() const {
if (Value() < 0x8)
return Output;
else if (Value() < 0x10)
return Unknown;
else
return Temporary;
}
int GetIndex() const {
if (GetRegisterType() == Output)
return Value();
else if (GetRegisterType() == Temporary)
return Value() - 0x10;
else
return Value();
}
std::string GetRegisterName() const {
std::map<RegisterType, std::string> type = {
{ Output, "o" },
{ Temporary, "t" },
{ Unknown, "u" }
};
return type[GetRegisterType()] + std::to_string(GetIndex());
}
} dest;
} common;
// Format used for flow control instructions ("if")
@ -128,6 +198,7 @@ union Instruction {
BitField<0x0a, 0xc, u32> offset_words;
} flow_control;
};
static_assert(std::is_standard_layout<Instruction>::value, "Structure is not using standard layout!");
union SwizzlePattern {
u32 hex;
@ -185,6 +256,8 @@ union SwizzlePattern {
// Components of "dest" that should be written to: LSB=dest.w, MSB=dest.x
BitField< 0, 4, u32> dest_mask;
BitField< 4, 1, u32> negate; // negates src1
BitField< 5, 2, Selector> src1_selector_3;
BitField< 7, 2, Selector> src1_selector_2;
BitField< 9, 2, Selector> src1_selector_1;

View file

@ -19,6 +19,7 @@
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClCompile Include="debug_utils\debug_utils.cpp" />
<ClCompile Include="renderer_opengl\renderer_opengl.cpp" />
<ClCompile Include="clipper.cpp" />
<ClCompile Include="command_processor.cpp" />
@ -40,6 +41,7 @@
<ClInclude Include="utils.h" />
<ClInclude Include="vertex_shader.h" />
<ClInclude Include="video_core.h" />
<ClInclude Include="debug_utils\debug_utils.h" />
<ClInclude Include="renderer_opengl\renderer_opengl.h" />
</ItemGroup>
<ItemGroup>

View file

@ -4,6 +4,9 @@
<Filter Include="renderer_opengl">
<UniqueIdentifier>{e0245557-dbd4-423e-9399-513d5e99f1e4}</UniqueIdentifier>
</Filter>
<Filter Include="debug_utils">
<UniqueIdentifier>{0ac498e6-bbd8-46e3-9d5f-e816546ab90e}</UniqueIdentifier>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="renderer_opengl\renderer_opengl.cpp">
@ -16,11 +19,11 @@
<ClCompile Include="utils.cpp" />
<ClCompile Include="vertex_shader.cpp" />
<ClCompile Include="video_core.cpp" />
<ClCompile Include="debug_utils\debug_utils.cpp">
<Filter>debug_utils</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="renderer_opengl\renderer_opengl.h">
<Filter>renderer_opengl</Filter>
</ClInclude>
<ClInclude Include="clipper.h" />
<ClInclude Include="command_processor.h" />
<ClInclude Include="gpu_debugger.h" />
@ -32,8 +35,12 @@
<ClInclude Include="utils.h" />
<ClInclude Include="vertex_shader.h" />
<ClInclude Include="video_core.h" />
<ClInclude Include="renderer_opengl\renderer_opengl.h" />
<ClInclude Include="debug_utils\debug_utils.h">
<Filter>debug_utils</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Text Include="CMakeLists.txt" />
</ItemGroup>
</Project>
</Project>