1
0
Fork 1
forked from suyu/suyu

Core: Reimplement Core Timing.

This commit is contained in:
Fernando Sahmkow 2021-11-27 16:26:48 +01:00
parent 096366ead5
commit 846c994cc9
3 changed files with 95 additions and 57 deletions

View file

@ -7,6 +7,7 @@
#include <tuple>
#include "common/microprofile.h"
#include "common/thread.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
@ -59,68 +60,96 @@ void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
const auto empty_timed_callback = [](std::uintptr_t, std::chrono::nanoseconds) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
if (is_multicore) {
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
const auto hardware_concurrency = std::thread::hardware_concurrency();
worker_threads.emplace_back(ThreadEntry, std::ref(*this));
if (hardware_concurrency > 8) {
worker_threads.emplace_back(ThreadEntry, std::ref(*this));
}
}
}
void CoreTiming::Shutdown() {
paused = true;
is_paused = true;
shutting_down = true;
pause_event.Set();
event.Set();
if (timer_thread) {
timer_thread->join();
{
std::unique_lock<std::mutex> main_lock(event_mutex);
event_cv.notify_all();
wait_pause_cv.notify_all();
}
for (auto& thread : worker_threads) {
thread.join();
}
worker_threads.clear();
ClearPendingEvents();
timer_thread.reset();
has_started = false;
}
void CoreTiming::Pause(bool is_paused) {
paused = is_paused;
pause_event.Set();
}
void CoreTiming::SyncPause(bool is_paused) {
if (is_paused == paused && paused_set == paused) {
void CoreTiming::Pause(bool is_paused_) {
std::unique_lock<std::mutex> main_lock(event_mutex);
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
return;
}
Pause(is_paused);
if (timer_thread) {
if (!is_paused) {
pause_event.Set();
if (is_multicore) {
is_paused = is_paused_;
event_cv.notify_all();
if (!is_paused_) {
wait_pause_cv.notify_all();
}
}
paused_state.store(is_paused_, std::memory_order_relaxed);
}
void CoreTiming::SyncPause(bool is_paused_) {
std::unique_lock<std::mutex> main_lock(event_mutex);
if (is_paused_ == paused_state.load(std::memory_order_relaxed)) {
return;
}
if (is_multicore) {
is_paused = is_paused_;
event_cv.notify_all();
if (!is_paused_) {
wait_pause_cv.notify_all();
}
}
paused_state.store(is_paused_, std::memory_order_relaxed);
if (is_multicore) {
if (is_paused_) {
wait_signal_cv.wait(main_lock, [this] { return pause_count == worker_threads.size(); });
} else {
wait_signal_cv.wait(main_lock, [this] { return pause_count == 0; });
}
event.Set();
while (paused_set != is_paused)
;
}
}
bool CoreTiming::IsRunning() const {
return !paused_set;
return !paused_state.load(std::memory_order_acquire);
}
bool CoreTiming::HasPendingEvents() const {
return !(wait_set && event_queue.empty());
std::unique_lock<std::mutex> main_lock(event_mutex);
return !event_queue.empty();
}
void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
{
std::scoped_lock scope{basic_lock};
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
std::unique_lock<std::mutex> main_lock(event_mutex);
const u64 timeout = static_cast<u64>((GetGlobalTimeNs() + ns_into_future).count());
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.emplace_back(Event{timeout, event_fifo_id++, user_data, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
if (is_multicore) {
event_cv.notify_one();
}
event.Set();
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data) {
std::scoped_lock scope{basic_lock};
std::unique_lock<std::mutex> main_lock(event_mutex);
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
@ -168,11 +197,12 @@ u64 CoreTiming::GetClockTicks() const {
}
void CoreTiming::ClearPendingEvents() {
std::unique_lock<std::mutex> main_lock(event_mutex);
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::scoped_lock lock{basic_lock};
std::unique_lock<std::mutex> main_lock(event_mutex);
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
@ -186,21 +216,21 @@ void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
}
std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
std::unique_lock<std::mutex> main_lock(event_mutex);
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
basic_lock.unlock();
event_mutex.unlock();
if (const auto event_type{evt.type.lock()}) {
event_type->callback(
evt.user_data, std::chrono::nanoseconds{static_cast<s64>(global_timer - evt.time)});
event_type->callback(evt.user_data, std::chrono::nanoseconds{static_cast<s64>(
GetGlobalTimeNs().count() - evt.time)});
}
basic_lock.lock();
event_mutex.lock();
global_timer = GetGlobalTimeNs().count();
}
@ -213,26 +243,34 @@ std::optional<s64> CoreTiming::Advance() {
}
void CoreTiming::ThreadLoop() {
const auto predicate = [this] { return !event_queue.empty() || is_paused; };
has_started = true;
while (!shutting_down) {
while (!paused) {
paused_set = false;
while (!is_paused && !shutting_down) {
const auto next_time = Advance();
if (next_time) {
if (*next_time > 0) {
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
event.WaitFor(next_time_ns);
std::unique_lock<std::mutex> main_lock(event_mutex);
event_cv.wait_for(main_lock, next_time_ns, predicate);
}
} else {
wait_set = true;
event.Wait();
std::unique_lock<std::mutex> main_lock(event_mutex);
event_cv.wait(main_lock, predicate);
}
wait_set = false;
}
paused_set = true;
clock->Pause(true);
pause_event.Wait();
clock->Pause(false);
std::unique_lock<std::mutex> main_lock(event_mutex);
pause_count++;
if (pause_count == worker_threads.size()) {
clock->Pause(true);
wait_signal_cv.notify_all();
}
wait_pause_cv.wait(main_lock, [this] { return !is_paused || shutting_down; });
pause_count--;
if (pause_count == 0) {
clock->Pause(false);
wait_signal_cv.notify_all();
}
}
}

View file

@ -14,7 +14,6 @@
#include <vector>
#include "common/common_types.h"
#include "common/thread.h"
#include "common/wall_clock.h"
namespace Core::Timing {
@ -146,19 +145,21 @@ private:
u64 event_fifo_id = 0;
std::shared_ptr<EventType> ev_lost;
Common::Event event{};
Common::Event pause_event{};
std::mutex basic_lock;
std::mutex advance_lock;
std::unique_ptr<std::thread> timer_thread;
std::atomic<bool> paused{};
std::atomic<bool> paused_set{};
std::atomic<bool> wait_set{};
std::atomic<bool> shutting_down{};
std::atomic<bool> has_started{};
std::function<void()> on_thread_init{};
std::vector<std::thread> worker_threads;
std::condition_variable event_cv;
std::condition_variable wait_pause_cv;
std::condition_variable wait_signal_cv;
mutable std::mutex event_mutex;
std::atomic<bool> paused_state{};
bool is_paused{};
bool shutting_down{};
bool is_multicore{};
size_t pause_count{};
/// Cycle timing
u64 ticks{};

View file

@ -27,7 +27,6 @@ void HostCallbackTemplate(std::uintptr_t user_data, std::chrono::nanoseconds ns_
static_assert(IDX < CB_IDS.size(), "IDX out of range");
callbacks_ran_flags.set(IDX);
REQUIRE(CB_IDS[IDX] == user_data);
REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
delays[IDX] = ns_late.count();
++expected_callback;
}