1
0
Fork 1
forked from suyu/suyu

core_timing: Use a fibonacci heap

This commit is contained in:
Merry 2023-09-13 22:49:41 +01:00
parent 7135bdc3bd
commit 3ad7eec9de
2 changed files with 34 additions and 32 deletions

View file

@ -32,6 +32,7 @@ struct CoreTiming::Event {
std::uintptr_t user_data;
std::weak_ptr<EventType> type;
s64 reschedule_time;
heap_t::handle_type handle{};
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
@ -122,9 +123,9 @@ void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};
event_queue.emplace_back(
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
auto h{event_queue.emplace(
Event{next_time.count(), event_fifo_id++, user_data, event_type, 0})};
(*h).handle = h;
}
event.Set();
@ -138,10 +139,9 @@ void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
std::scoped_lock scope{basic_lock};
const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};
event_queue.emplace_back(
Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
auto h{event_queue.emplace(Event{next_time.count(), event_fifo_id++, user_data, event_type,
resched_time.count()})};
(*h).handle = h;
}
event.Set();
@ -151,15 +151,17 @@ void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
std::uintptr_t user_data, bool wait) {
{
std::scoped_lock lk{basic_lock};
const auto itr =
std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.user_data == user_data;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
std::vector<heap_t::handle_type> to_remove;
for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
const Event& e = *itr;
if (e.type.lock().get() == event_type.get() && e.user_data == user_data) {
to_remove.push_back(itr->handle);
}
}
for (auto h : to_remove) {
event_queue.erase(h);
}
}
@ -200,10 +202,9 @@ std::optional<s64> CoreTiming::Advance() {
std::scoped_lock lock{advance_lock, basic_lock};
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
while (!event_queue.empty() && event_queue.top().time <= global_timer) {
Event evt = event_queue.top();
event_queue.pop();
if (const auto event_type{evt.type.lock()}) {
basic_lock.unlock();
@ -219,16 +220,16 @@ std::optional<s64> CoreTiming::Advance() {
? new_schedule_time.value().count()
: evt.reschedule_time};
// If this event was scheduled into a pause, its time now is going to be way behind.
// Re-set this event to continue from the end of the pause.
// If this event was scheduled into a pause, its time now is going to be way
// behind. Re-set this event to continue from the end of the pause.
auto next_time{evt.time + next_schedule_time};
if (evt.time < pause_end_time) {
next_time = pause_end_time + next_schedule_time;
}
event_queue.emplace_back(
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
auto h{event_queue.emplace(Event{next_time, event_fifo_id++, evt.user_data,
evt.type, next_schedule_time})};
(*h).handle = h;
}
}
@ -236,7 +237,7 @@ std::optional<s64> CoreTiming::Advance() {
}
if (!event_queue.empty()) {
return event_queue.front().time;
return event_queue.top().time;
} else {
return std::nullopt;
}
@ -274,7 +275,8 @@ void CoreTiming::ThreadLoop() {
#endif
}
} else {
// Queue is empty, wait until another event is scheduled and signals us to continue.
// Queue is empty, wait until another event is scheduled and signals us to
// continue.
wait_set = true;
event.Wait();
}

View file

@ -11,7 +11,8 @@
#include <optional>
#include <string>
#include <thread>
#include <vector>
#include <boost/heap/fibonacci_heap.hpp>
#include "common/common_types.h"
#include "common/thread.h"
@ -151,11 +152,10 @@ private:
s64 timer_resolution_ns;
#endif
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accommodated by the standard adaptor class.
std::vector<Event> event_queue;
using heap_t =
boost::heap::fibonacci_heap<CoreTiming::Event, boost::heap::compare<std::greater<>>>;
heap_t event_queue;
u64 event_fifo_id = 0;
std::shared_ptr<EventType> ev_lost;