nixpkgs-suyu/lib/systems/parse.nix
Matthew Bauer d180cb9850 cc-wrapper: make machine configuration configurable
It is useful to make these dynamic and not bake them into gcc. This
means we don’t have to rebuild gcc to change these values. Instead, we
will pass cflags to gcc based on platform values. This was already
done hackily for android gcc (which is multi-target), but not for our
own gccs which are single target.

To accomplish this, we need to add a few things:

- add ‘arch’ to cpu
- add NIX_CFLAGS_COMPILE_BEFORE flag (goes before args)
- set -march everywhere
- set mcpu, mfpu, mmode, and mtune based on targetPlatform.gcc flags

cc-wrapper: only set -march when it is in the cpu type

Some architectures don’t have a good mapping of -march. For instance
POWER architecture doesn’t support the -march flag at all!

https://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options
2019-04-20 20:05:51 -04:00

438 lines
17 KiB
Nix
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Define the list of system with their properties.
#
# See https://clang.llvm.org/docs/CrossCompilation.html and
# http://llvm.org/docs/doxygen/html/Triple_8cpp_source.html especially
# Triple::normalize. Parsing should essentially act as a more conservative
# version of that last function.
#
# Most of the types below come in "open" and "closed" pairs. The open ones
# specify what information we need to know about systems in general, and the
# closed ones are sub-types representing the whitelist of systems we support in
# practice.
#
# Code in the remainder of nixpkgs shouldn't rely on the closed ones in
# e.g. exhaustive cases. Its more a sanity check to make sure nobody defines
# systems that overlap with existing ones and won't notice something amiss.
#
{ lib }:
with lib.lists;
with lib.types;
with lib.attrsets;
with lib.strings;
with (import ./inspect.nix { inherit lib; }).predicates;
let
inherit (lib.options) mergeOneOption;
setTypes = type:
mapAttrs (name: value:
assert type.check value;
setType type.name ({ inherit name; } // value));
in
rec {
################################################################################
types.openSignificantByte = mkOptionType {
name = "significant-byte";
description = "Endianness";
merge = mergeOneOption;
};
types.significantByte = enum (attrValues significantBytes);
significantBytes = setTypes types.openSignificantByte {
bigEndian = {};
littleEndian = {};
};
################################################################################
# Reasonable power of 2
types.bitWidth = enum [ 8 16 32 64 128 ];
################################################################################
types.openCpuType = mkOptionType {
name = "cpu-type";
description = "instruction set architecture name and information";
merge = mergeOneOption;
check = x: types.bitWidth.check x.bits
&& (if 8 < x.bits
then types.significantByte.check x.significantByte
else !(x ? significantByte));
};
types.cpuType = enum (attrValues cpuTypes);
cpuTypes = with significantBytes; setTypes types.openCpuType {
arm = { bits = 32; significantByte = littleEndian; family = "arm"; };
armv5tel = { bits = 32; significantByte = littleEndian; family = "arm"; version = "5"; arch = "armv5t"; };
armv6m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6-m"; };
armv6l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "6"; arch = "armv6"; };
armv7a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-a"; };
armv7r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-r"; };
armv7m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7-m"; };
armv7l = { bits = 32; significantByte = littleEndian; family = "arm"; version = "7"; arch = "armv7"; };
armv8a = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
armv8r = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
armv8m = { bits = 32; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-m"; };
aarch64 = { bits = 64; significantByte = littleEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
aarch64_be = { bits = 64; significantByte = bigEndian; family = "arm"; version = "8"; arch = "armv8-a"; };
i386 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i386"; };
i486 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i486"; };
i586 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i586"; };
i686 = { bits = 32; significantByte = littleEndian; family = "x86"; arch = "i686"; };
x86_64 = { bits = 64; significantByte = littleEndian; family = "x86"; arch = "x86-64"; };
mips = { bits = 32; significantByte = bigEndian; family = "mips"; };
mipsel = { bits = 32; significantByte = littleEndian; family = "mips"; };
mips64 = { bits = 64; significantByte = bigEndian; family = "mips"; };
mips64el = { bits = 64; significantByte = littleEndian; family = "mips"; };
powerpc = { bits = 32; significantByte = bigEndian; family = "power"; };
powerpc64 = { bits = 64; significantByte = bigEndian; family = "power"; };
powerpc64le = { bits = 64; significantByte = littleEndian; family = "power"; };
powerpcle = { bits = 32; significantByte = littleEndian; family = "power"; };
riscv32 = { bits = 32; significantByte = littleEndian; family = "riscv"; };
riscv64 = { bits = 64; significantByte = littleEndian; family = "riscv"; };
sparc = { bits = 32; significantByte = bigEndian; family = "sparc"; };
sparc64 = { bits = 64; significantByte = bigEndian; family = "sparc"; };
wasm32 = { bits = 32; significantByte = littleEndian; family = "wasm"; };
wasm64 = { bits = 64; significantByte = littleEndian; family = "wasm"; };
alpha = { bits = 64; significantByte = littleEndian; family = "alpha"; };
msp430 = { bits = 16; significantByte = littleEndian; family = "msp430"; };
avr = { bits = 8; family = "avr"; };
};
# Determine where two CPUs are compatible with each other. That is,
# can we run code built for system b on system a? For that to
# happen, then the set of all possible possible programs that system
# b accepts must be a subset of the set of all programs that system
# a accepts. This compatibility relation forms a category where each
# CPU is an object and each arrow from a to b represents
# compatibility. CPUs with multiple modes of Endianness are
# isomorphic while all CPUs are endomorphic because any program
# built for a CPU can run on that CPU.
isCompatible = a: b: with cpuTypes; lib.any lib.id [
# x86
(b == i386 && isCompatible a i486)
(b == i486 && isCompatible a i586)
(b == i586 && isCompatible a i686)
# XXX: Not true in some cases. Like in WSL mode.
(b == i686 && isCompatible a x86_64)
# ARMv4
(b == arm && isCompatible a armv5tel)
# ARMv5
(b == armv5tel && isCompatible a armv6l)
# ARMv6
(b == armv6l && isCompatible a armv6m)
(b == armv6m && isCompatible a armv7l)
# ARMv7
(b == armv7l && isCompatible a armv7a)
(b == armv7l && isCompatible a armv7r)
(b == armv7l && isCompatible a armv7m)
(b == armv7a && isCompatible a armv8a)
(b == armv7r && isCompatible a armv8a)
(b == armv7m && isCompatible a armv8a)
(b == armv7a && isCompatible a armv8r)
(b == armv7r && isCompatible a armv8r)
(b == armv7m && isCompatible a armv8r)
(b == armv7a && isCompatible a armv8m)
(b == armv7r && isCompatible a armv8m)
(b == armv7m && isCompatible a armv8m)
# ARMv8
(b == armv8r && isCompatible a armv8a)
(b == armv8m && isCompatible a armv8a)
# XXX: not always true! Some arm64 cpus dont support arm32 mode.
(b == aarch64 && a == armv8a)
(b == armv8a && isCompatible a aarch64)
(b == aarch64 && a == aarch64_be)
(b == aarch64_be && isCompatible a aarch64)
# PowerPC
(b == powerpc && isCompatible a powerpc64)
(b == powerpcle && isCompatible a powerpc)
(b == powerpc && a == powerpcle)
(b == powerpc64le && isCompatible a powerpc64)
(b == powerpc64 && a == powerpc64le)
# MIPS
(b == mips && isCompatible a mips64)
(b == mips && a == mipsel)
(b == mipsel && isCompatible a mips)
(b == mips64 && a == mips64el)
(b == mips64el && isCompatible a mips64)
# RISCV
(b == riscv32 && isCompatible a riscv64)
# SPARC
(b == sparc && isCompatible a sparc64)
# WASM
(b == wasm32 && isCompatible a wasm64)
# identity
(b == a)
];
################################################################################
types.openVendor = mkOptionType {
name = "vendor";
description = "vendor for the platform";
merge = mergeOneOption;
};
types.vendor = enum (attrValues vendors);
vendors = setTypes types.openVendor {
apple = {};
pc = {};
none = {};
unknown = {};
};
################################################################################
types.openExecFormat = mkOptionType {
name = "exec-format";
description = "executable container used by the kernel";
merge = mergeOneOption;
};
types.execFormat = enum (attrValues execFormats);
execFormats = setTypes types.openExecFormat {
aout = {}; # a.out
elf = {};
macho = {};
pe = {};
unknown = {};
};
################################################################################
types.openKernelFamily = mkOptionType {
name = "exec-format";
description = "executable container used by the kernel";
merge = mergeOneOption;
};
types.kernelFamily = enum (attrValues kernelFamilies);
kernelFamilies = setTypes types.openKernelFamily {
bsd = {};
darwin = {};
};
################################################################################
types.openKernel = mkOptionType {
name = "kernel";
description = "kernel name and information";
merge = mergeOneOption;
check = x: types.execFormat.check x.execFormat
&& all types.kernelFamily.check (attrValues x.families);
};
types.kernel = enum (attrValues kernels);
kernels = with execFormats; with kernelFamilies; setTypes types.openKernel {
# TODO(@Ericson2314): Don't want to mass-rebuild yet to keeping 'darwin' as
# the nnormalized name for macOS.
macos = { execFormat = macho; families = { inherit darwin; }; name = "darwin"; };
ios = { execFormat = macho; families = { inherit darwin; }; };
freebsd = { execFormat = elf; families = { inherit bsd; }; };
linux = { execFormat = elf; families = { }; };
netbsd = { execFormat = elf; families = { inherit bsd; }; };
none = { execFormat = unknown; families = { }; };
openbsd = { execFormat = elf; families = { inherit bsd; }; };
solaris = { execFormat = elf; families = { }; };
windows = { execFormat = pe; families = { }; };
} // { # aliases
# 'darwin' is the kernel for all of them. We choose macOS by default.
darwin = kernels.macos;
watchos = kernels.ios;
tvos = kernels.ios;
win32 = kernels.windows;
};
################################################################################
types.openAbi = mkOptionType {
name = "abi";
description = "binary interface for compiled code and syscalls";
merge = mergeOneOption;
};
types.abi = enum (attrValues abis);
abis = setTypes types.openAbi {
cygnus = {};
msvc = {};
# Note: eabi is specific to ARM and PowerPC.
# On PowerPC, this corresponds to PPCEABI.
# On ARM, this corresponds to ARMEABI.
eabi = { float = "soft"; };
eabihf = { float = "hard"; };
# Other architectures should use ELF in embedded situations.
elf = {};
androideabi = {};
android = {
assertions = [
{ assertion = platform: !platform.isAarch32;
message = ''
The "android" ABI is not for 32-bit ARM. Use "androideabi" instead.
'';
}
];
};
gnueabi = { float = "soft"; };
gnueabihf = { float = "hard"; };
gnu = {
assertions = [
{ assertion = platform: !platform.isAarch32;
message = ''
The "gnu" ABI is ambiguous on 32-bit ARM. Use "gnueabi" or "gnueabihf" instead.
'';
}
];
};
musleabi = { float = "soft"; };
musleabihf = { float = "hard"; };
musl = {};
uclibceabihf = { float = "soft"; };
uclibceabi = { float = "hard"; };
uclibc = {};
unknown = {};
};
################################################################################
types.parsedPlatform = mkOptionType {
name = "system";
description = "fully parsed representation of llvm- or nix-style platform tuple";
merge = mergeOneOption;
check = { cpu, vendor, kernel, abi }:
types.cpuType.check cpu
&& types.vendor.check vendor
&& types.kernel.check kernel
&& types.abi.check abi;
};
isSystem = isType "system";
mkSystem = components:
assert types.parsedPlatform.check components;
setType "system" components;
mkSkeletonFromList = l: {
"1" = if elemAt l 0 == "avr"
then { cpu = elemAt l 0; kernel = "none"; abi = "unknown"; }
else throw "Target specification with 1 components is ambiguous";
"2" = # We only do 2-part hacks for things Nix already supports
if elemAt l 1 == "cygwin"
then { cpu = elemAt l 0; kernel = "windows"; abi = "cygnus"; }
# MSVC ought to be the default ABI so this case isn't needed. But then it
# becomes difficult to handle the gnu* variants for Aarch32 correctly for
# minGW. So it's easier to make gnu* the default for the MinGW, but
# hack-in MSVC for the non-MinGW case right here.
else if elemAt l 1 == "windows"
then { cpu = elemAt l 0; kernel = "windows"; abi = "msvc"; }
else if (elemAt l 1) == "elf"
then { cpu = elemAt l 0; vendor = "unknown"; kernel = "none"; abi = elemAt l 1; }
else { cpu = elemAt l 0; kernel = elemAt l 1; };
"3" = # Awkwards hacks, beware!
if elemAt l 1 == "apple"
then { cpu = elemAt l 0; vendor = "apple"; kernel = elemAt l 2; }
else if (elemAt l 1 == "linux") || (elemAt l 2 == "gnu")
then { cpu = elemAt l 0; kernel = elemAt l 1; abi = elemAt l 2; }
else if (elemAt l 2 == "mingw32") # autotools breaks on -gnu for window
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = "windows"; }
else if hasPrefix "netbsd" (elemAt l 2)
then { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; }
else if (elem (elemAt l 2) ["eabi" "eabihf" "elf"])
then { cpu = elemAt l 0; vendor = "unknown"; kernel = elemAt l 1; abi = elemAt l 2; }
else throw "Target specification with 3 components is ambiguous";
"4" = { cpu = elemAt l 0; vendor = elemAt l 1; kernel = elemAt l 2; abi = elemAt l 3; };
}.${toString (length l)}
or (throw "system string has invalid number of hyphen-separated components");
# This should revert the job done by config.guess from the gcc compiler.
mkSystemFromSkeleton = { cpu
, # Optional, but fallback too complex for here.
# Inferred below instead.
vendor ? assert false; null
, kernel
, # Also inferred below
abi ? assert false; null
} @ args: let
getCpu = name: cpuTypes.${name} or (throw "Unknown CPU type: ${name}");
getVendor = name: vendors.${name} or (throw "Unknown vendor: ${name}");
getKernel = name: kernels.${name} or (throw "Unknown kernel: ${name}");
getAbi = name: abis.${name} or (throw "Unknown ABI: ${name}");
parsed = rec {
cpu = getCpu args.cpu;
vendor =
/**/ if args ? vendor then getVendor args.vendor
else if isDarwin parsed then vendors.apple
else if isWindows parsed then vendors.pc
else vendors.unknown;
kernel = if hasPrefix "darwin" args.kernel then getKernel "darwin"
else if hasPrefix "netbsd" args.kernel then getKernel "netbsd"
else getKernel args.kernel;
abi =
/**/ if args ? abi then getAbi args.abi
else if isLinux parsed || isWindows parsed then
if isAarch32 parsed then
if lib.versionAtLeast (parsed.cpu.version or "0") "6"
then abis.gnueabihf
else abis.gnueabi
else abis.gnu
else abis.unknown;
};
in mkSystem parsed;
mkSystemFromString = s: mkSystemFromSkeleton (mkSkeletonFromList (lib.splitString "-" s));
doubleFromSystem = { cpu, vendor, kernel, abi, ... }:
/**/ if abi == abis.cygnus then "${cpu.name}-cygwin"
else if kernel.families ? darwin then "${cpu.name}-darwin"
else "${cpu.name}-${kernel.name}";
tripleFromSystem = { cpu, vendor, kernel, abi, ... } @ sys: assert isSystem sys; let
optAbi = lib.optionalString (abi != abis.unknown) "-${abi.name}";
in "${cpu.name}-${vendor.name}-${kernel.name}${optAbi}";
################################################################################
}