{ stdenv, bazel_3, buildBazelPackage, isPy3k, lib, fetchFromGitHub, symlinkJoin , addOpenGLRunpath # Python deps , buildPythonPackage, pythonOlder, pythonAtLeast, python # Python libraries , numpy, tensorflow-tensorboard_2, absl-py , future, setuptools, wheel, keras-preprocessing, google-pasta , opt-einsum, astunparse, h5py , termcolor, grpcio, six, wrapt, protobuf, tensorflow-estimator_2 , dill, flatbuffers-python, tblib, typing-extensions # Common deps , git, pybind11, which, binutils, glibcLocales, cython, perl # Common libraries , jemalloc, mpi, gast, grpc, sqlite, boringssl, jsoncpp , curl, snappy, flatbuffers-core, lmdb-core, icu, double-conversion, libpng, libjpeg_turbo, giflib # Upsteam by default includes cuda support since tensorflow 1.15. We could do # that in nix as well. It would make some things easier and less confusing, but # it would also make the default tensorflow package unfree. See # https://groups.google.com/a/tensorflow.org/forum/#!topic/developers/iRCt5m4qUz0 , cudaSupport ? false, cudatoolkit ? null, cudnn ? null, nccl ? null , mklSupport ? false, mkl ? null , tensorboardSupport ? true # XLA without CUDA is broken , xlaSupport ? cudaSupport # Default from ./configure script , cudaCapabilities ? [ "sm_35" "sm_50" "sm_60" "sm_70" "sm_75" "compute_80" ] , sse42Support ? stdenv.hostPlatform.sse4_2Support , avx2Support ? stdenv.hostPlatform.avx2Support , fmaSupport ? stdenv.hostPlatform.fmaSupport # Darwin deps , Foundation, Security }: assert cudaSupport -> cudatoolkit != null && cudnn != null; # unsupported combination assert ! (stdenv.isDarwin && cudaSupport); assert mklSupport -> mkl != null; let withTensorboard = (pythonOlder "3.6") || tensorboardSupport; cudatoolkit_joined = symlinkJoin { name = "${cudatoolkit.name}-merged"; paths = [ cudatoolkit.lib cudatoolkit.out ] ++ lib.optionals (lib.versionOlder cudatoolkit.version "11") [ # for some reason some of the required libs are in the targets/x86_64-linux # directory; not sure why but this works around it "${cudatoolkit}/targets/${stdenv.system}" ]; }; cudatoolkit_cc_joined = symlinkJoin { name = "${cudatoolkit.cc.name}-merged"; paths = [ cudatoolkit.cc binutils.bintools # for ar, dwp, nm, objcopy, objdump, strip ]; }; # Needed for _some_ system libraries, grep INCLUDEDIR. includes_joined = symlinkJoin { name = "tensorflow-deps-merged"; paths = [ jsoncpp ]; }; tfFeature = x: if x then "1" else "0"; version = "2.4.0"; variant = if cudaSupport then "-gpu" else ""; pname = "tensorflow${variant}"; pythonEnv = python.withPackages (_: [ # python deps needed during wheel build time (not runtime, see the buildPythonPackage part for that) # This list can likely be shortened, but each trial takes multiple hours so won't bother for now. absl-py astunparse dill flatbuffers-python gast google-pasta grpcio h5py keras-preprocessing numpy opt-einsum protobuf setuptools six tblib tensorflow-estimator_2 tensorflow-tensorboard_2 termcolor typing-extensions wheel wrapt ]); bazel-build = buildBazelPackage { name = "${pname}-${version}"; bazel = bazel_3; src = fetchFromGitHub { owner = "tensorflow"; repo = "tensorflow"; rev = "v${version}"; sha256 = "0yl06aypfxrcs35828xf04mkidz1x0j89v0q5h4d2xps1cb5rv3f"; }; patches = [ # Relax too strict Python packages versions dependencies. ./relax-dependencies.patch # Add missing `io_bazel_rules_docker` dependency. ./workspace.patch ]; # On update, it can be useful to steal the changes from gentoo # https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/tensorflow nativeBuildInputs = [ which pythonEnv cython perl ] ++ lib.optional cudaSupport addOpenGLRunpath; buildInputs = [ jemalloc mpi glibcLocales git # libs taken from system through the TF_SYS_LIBS mechanism grpc sqlite boringssl jsoncpp curl pybind11 snappy flatbuffers-core icu double-conversion libpng libjpeg_turbo giflib lmdb-core ] ++ lib.optionals cudaSupport [ cudatoolkit cudnn ] ++ lib.optionals mklSupport [ mkl ] ++ lib.optionals stdenv.isDarwin [ Foundation Security ]; # arbitrarily set to the current latest bazel version, overly careful TF_IGNORE_MAX_BAZEL_VERSION = true; # Take as many libraries from the system as possible. Keep in sync with # list of valid syslibs in # https://github.com/tensorflow/tensorflow/blob/master/third_party/systemlibs/syslibs_configure.bzl TF_SYSTEM_LIBS = lib.concatStringsSep "," [ "absl_py" "astor_archive" "astunparse_archive" "boringssl" # Not packaged in nixpkgs # "com_github_googleapis_googleapis" # "com_github_googlecloudplatform_google_cloud_cpp" "com_github_grpc_grpc" # Multiple issues with custom protobuf. # First `com_github_googleapis` fails to configure. Can be worked around by disabling `com_github_googleapis` # and related functionality, but then the next error is about "dangling symbolic link", and in general # looks like that's only the beginning: see # https://stackoverflow.com/questions/55578884/how-to-build-tensorflow-1-13-1-with-custom-protobuf # "com_google_protobuf" # Fails with the error: external/org_tensorflow/tensorflow/core/profiler/utils/tf_op_utils.cc:46:49: error: no matching function for call to 're2::RE2::FullMatch(absl::lts_2020_02_25::string_view&, re2::RE2&)' # "com_googlesource_code_re2" "curl" "cython" "dill_archive" "double_conversion" "enum34_archive" "flatbuffers" "functools32_archive" "gast_archive" "gif" "hwloc" "icu" "jsoncpp_git" "libjpeg_turbo" "lmdb" "nasm" # "nsync" # not packaged in nixpkgs "opt_einsum_archive" "org_sqlite" "pasta" "pcre" "png" "pybind11" "six_archive" "snappy" "tblib_archive" "termcolor_archive" "typing_extensions_archive" "wrapt" "zlib" ]; INCLUDEDIR = "${includes_joined}/include"; PYTHON_BIN_PATH = pythonEnv.interpreter; TF_NEED_GCP = true; TF_NEED_HDFS = true; TF_ENABLE_XLA = tfFeature xlaSupport; CC_OPT_FLAGS = " "; # https://github.com/tensorflow/tensorflow/issues/14454 TF_NEED_MPI = tfFeature cudaSupport; TF_NEED_CUDA = tfFeature cudaSupport; TF_CUDA_PATHS = lib.optionalString cudaSupport "${cudatoolkit_joined},${cudnn},${nccl}"; GCC_HOST_COMPILER_PREFIX = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin"; GCC_HOST_COMPILER_PATH = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin/gcc"; TF_CUDA_COMPUTE_CAPABILITIES = lib.concatStringsSep "," cudaCapabilities; postPatch = '' # bazel 3.3 should work just as well as bazel 3.1 rm -f .bazelversion '' + lib.optionalString (!withTensorboard) '' # Tensorboard pulls in a bunch of dependencies, some of which may # include security vulnerabilities. So we make it optional. # https://github.com/tensorflow/tensorflow/issues/20280#issuecomment-400230560 sed -i '/tensorboard ~=/d' tensorflow/tools/pip_package/setup.py ''; # https://github.com/tensorflow/tensorflow/pull/39470 NIX_CFLAGS_COMPILE = [ "-Wno-stringop-truncation" ]; preConfigure = let opt_flags = [] ++ lib.optionals sse42Support ["-msse4.2"] ++ lib.optionals avx2Support ["-mavx2"] ++ lib.optionals fmaSupport ["-mfma"]; in '' patchShebangs configure # dummy ldconfig mkdir dummy-ldconfig echo "#!${stdenv.shell}" > dummy-ldconfig/ldconfig chmod +x dummy-ldconfig/ldconfig export PATH="$PWD/dummy-ldconfig:$PATH" export PYTHON_LIB_PATH="$NIX_BUILD_TOP/site-packages" export CC_OPT_FLAGS="${lib.concatStringsSep " " opt_flags}" mkdir -p "$PYTHON_LIB_PATH" # To avoid mixing Python 2 and Python 3 unset PYTHONPATH ''; configurePhase = '' runHook preConfigure ./configure runHook postConfigure ''; hardeningDisable = [ "format" ]; bazelBuildFlags = [ "--config=opt" # optimize using the flags set in the configure phase ] ++ lib.optionals (mklSupport) [ "--config=mkl" ]; bazelTarget = "//tensorflow/tools/pip_package:build_pip_package //tensorflow/tools/lib_package:libtensorflow"; removeRulesCC = false; # Without this Bazel complaints about sandbox violations. dontAddBazelOpts = true; fetchAttrs = { # cudaSupport causes fetch of ncclArchive, resulting in different hashes sha256 = if cudaSupport then "1i7z2a7bc2q1vn1h9nx1xc6g1r1cby2xvbcs20fj9h6c2fgaw9j4" else "0s8q5rxq8abr50c5jpwv96ncfc0k8jw7w70ri8viqy031g9v9v45"; }; buildAttrs = { outputs = [ "out" "python" ]; preBuild = '' patchShebangs . ''; installPhase = '' mkdir -p "$out" tar -xf bazel-bin/tensorflow/tools/lib_package/libtensorflow.tar.gz -C "$out" # Write pkgconfig file. mkdir "$out/lib/pkgconfig" cat > "$out/lib/pkgconfig/tensorflow.pc" << EOF Name: TensorFlow Version: ${version} Description: Library for computation using data flow graphs for scalable machine learning Requires: Libs: -L$out/lib -ltensorflow Cflags: -I$out/include/tensorflow EOF # build the source code, then copy it to $python (build_pip_package # actually builds a symlink farm so we must dereference them). bazel-bin/tensorflow/tools/pip_package/build_pip_package --src "$PWD/dist" cp -Lr "$PWD/dist" "$python" ''; postFixup = lib.optionalString cudaSupport '' find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do addOpenGLRunpath "$lib" done ''; }; meta = with lib; { description = "Computation using data flow graphs for scalable machine learning"; homepage = "http://tensorflow.org"; license = licenses.asl20; maintainers = with maintainers; [ jyp abbradar ]; platforms = with platforms; linux ++ darwin; broken = !(xlaSupport -> cudaSupport); }; }; in buildPythonPackage { inherit version pname; disabled = !isPy3k; src = bazel-build.python; # Upstream has a pip hack that results in bin/tensorboard being in both tensorflow # and the propagated input tensorflow-tensorboard, which causes environment collisions. # Another possibility would be to have tensorboard only in the buildInputs # https://github.com/tensorflow/tensorflow/blob/v1.7.1/tensorflow/tools/pip_package/setup.py#L79 postInstall = '' rm $out/bin/tensorboard ''; setupPyGlobalFlags = [ "--project_name ${pname}" ]; # tensorflow/tools/pip_package/setup.py propagatedBuildInputs = [ absl-py astunparse dill flatbuffers-python gast google-pasta grpcio h5py keras-preprocessing numpy opt-einsum protobuf six tblib tensorflow-estimator_2 termcolor typing-extensions wrapt ] ++ lib.optionals withTensorboard [ tensorflow-tensorboard_2 ]; nativeBuildInputs = lib.optional cudaSupport addOpenGLRunpath; postFixup = lib.optionalString cudaSupport '' find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do addOpenGLRunpath "$lib" patchelf --set-rpath "${cudatoolkit}/lib:${cudatoolkit.lib}/lib:${cudnn}/lib:${nccl}/lib:$(patchelf --print-rpath "$lib")" "$lib" done ''; # Actual tests are slow and impure. # TODO try to run them anyway # TODO better test (files in tensorflow/tools/ci_build/builds/*test) checkPhase = '' ${python.interpreter} <