If you define a unit, and either systemd or a package in
systemd.packages already provides that unit, then we now generate a
file /etc/systemd/system/<unit>.d/overrides.conf. This makes it
possible to use upstream units, while allowing them to be customised
from the NixOS configuration. For instance, the module nix-daemon.nix
now uses the units provided by the Nix package. And all unit
definitions that duplicated upstream systemd units are finally gone.
This makes the baseUnit option unnecessary, so I've removed it.
Using pkgs.lib on the spine of module evaluation is problematic
because the pkgs argument depends on the result of module
evaluation. To prevent an infinite recursion, pkgs and some of the
modules are evaluated twice, which is inefficient. Using ‘with lib’
prevents this problem.
switch-to-configuration.pl is currently hard-coded to assume that if a
unit is in the "auto-restart" state that something has gone wrong, but
this is not strictly true. For example, I run offlineimap as a oneshot
service restarting itself every minute (on success). NixOS currently
thinks that offlineimap has failed to start as it enters the
auto-restart state, because it doesn't consider why the unit failed.
This commit changes switch-to-configuration.pl to inspect the full
status of a unit in auto-restart state, and now only considers it failed
if the ExecMainStatus is non-zero.
You can now say:
systemd.containers.foo.config =
{ services.openssh.enable = true;
services.openssh.ports = [ 2022 ];
users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ];
};
which defines a NixOS instance with the given configuration running
inside a lightweight container.
You can also manage the configuration of the container independently
from the host:
systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo";
where "path" is a NixOS system profile. It can be created/updated by
doing:
$ nix-env --set -p /nix/var/nix/profiles/containers/foo \
-f '<nixos>' -A system -I nixos-config=foo.nix
The container configuration (foo.nix) should define
boot.isContainer = true;
to optimise away the building of a kernel and initrd. This is done
automatically when using the "config" route.
On the host, a lightweight container appears as the service
"container-<name>.service". The container is like a regular NixOS
(virtual) machine, except that it doesn't have its own kernel. It has
its own root file system (by default /var/lib/containers/<name>), but
shares the Nix store of the host (as a read-only bind mount). It also
has access to the network devices of the host.
Currently, if the configuration of the container changes, running
"nixos-rebuild switch" on the host will cause the container to be
rebooted. In the future we may want to send some message to the
container so that it can activate the new container configuration
without rebooting.
Containers are not perfectly isolated yet. In particular, the host's
/sys/fs/cgroup is mounted (writable!) in the guest.
The major changes are:
* The evaluation is now driven by the declared options. In
particular, this fixes the long-standing problem with lack of
laziness of disabled option definitions. Thus, a configuration like
config = mkIf false {
environment.systemPackages = throw "bla";
};
will now evaluate without throwing an error. This also improves
performance since we're not evaluating unused option definitions.
* The implementation of properties is greatly simplified.
* There is a new type constructor "submodule" that replaces
"optionSet". Unlike "optionSet", "submodule" gets its option
declarations as an argument, making it more like "listOf" and other
type constructors. A typical use is:
foo = mkOption {
type = type.attrsOf (type.submodule (
{ config, ... }:
{ bar = mkOption { ... };
xyzzy = mkOption { ... };
}));
};
Existing uses of "optionSet" are automatically mapped to
"submodule".
* Modules are now checked for unsupported attributes: you get an error
if a module contains an attribute other than "config", "options" or
"imports".
* The new implementation is faster and uses much less memory.