This now provides a handful of different grsecurity kernels for slightly
different 'flavors' of packages. This doesn't change the grsecurity
module to use them just yet, however.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
AppArmor only requires a few patches to the 3.2 and 3.4 kernels in order
to work properly (with the minor catch grsecurity -stable includes the
3.2 patches.) This adds them to the kernel builds by default, removes
features.apparmor (since it's always true) and makes it the default MAC
system.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
kernels:
- longterm: 3.4.87 -> 3.4.88
- longterm: 3.10.37 -> 3.10.38
- stable: 3.13.10 -> 3.13.11
- stable: 3.14.1 -> 3.14.2
grsecurity:
- test: 3.0-3.14.1-201404241722 -> 3.0-3.14.2-201404270907
NOTE: technically the 3.13 stable kernel is now EOL. However, it will
become the long-term grsecurity stable kernel, and will have ongoing
support from Canonical.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
This module implements a significant refactoring in grsecurity
configuration for NixOS, making it far more usable by default and much
easier to configure.
- New security.grsecurity NixOS attributes.
- All grsec kernels supported
- Allows default 'auto' grsec configuration, or custom config
- Supports custom kernel options through kernelExtraConfig
- Defaults to high-security - user must choose kernel, server/desktop
mode, and any virtualisation software. That's all.
- kptr_restrict is fixed under grsecurity (it's unwriteable)
- grsecurity patch creation is now significantly abstracted
- only need revision, version, and SHA1
- kernel version requirements are asserted for sanity
- built kernels can have the uname specify the exact grsec version
for development or bug reports. Off by default (requires
`security.grsecurity.config.verboseVersion = true;`)
- grsecurity sysctl support
- By default, disabled.
- For people who enable it, NixOS deploys a 'grsec-lock' systemd
service which runs at startup. You are expected to configure sysctl
through NixOS like you regularly would, which will occur before the
service is started. As a result, changing sysctl settings requires
a reboot.
- New default group: 'grsecurity'
- Root is a member by default
- GRKERNSEC_PROC_GID is implicitly set to the 'grsecurity' GID,
making it possible to easily add users to this group for /proc
access
- AppArmor is now automatically enabled where it wasn't before, despite
implying features.apparmor = true
The most trivial example of enabling grsecurity in your kernel is by
specifying:
security.grsecurity.enable = true;
security.grsecurity.testing = true; # testing 3.13 kernel
security.grsecurity.config.system = "desktop"; # or "server"
This specifies absolutely no virtualisation support. In general, you
probably at least want KVM host support, which is a little more work.
So:
security.grsecurity.enable = true;
security.grsecurity.stable = true; # enable stable 3.2 kernel
security.grsecurity.config = {
system = "server";
priority = "security";
virtualisationConfig = "host";
virtualisationSoftware = "kvm";
hardwareVirtualisation = true;
}
This module has primarily been tested on Hetzner EX40 & VQ7 servers
using NixOps.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Realistically, common-config is useful, but there are a lot of things in
there that are non-optionally specified that aren't always useful. For
example, when deploying grsecurity, I don't want the bluetooth,
wireless, or input joystick/extra filesystem stack (XFS, etc), nor the
staging drivers tree.
The problem is that if you specify this in your own kernel config in the
grsecurity module, by saying 'BT n' to turn off bluetooth,
common-config turns on 'BT_HCIUART_BCSP y', which then becomes unused
and errors out.
This is really just an arbitrary picking at the moment, but it should be
OK.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Lockdep doesn't *really* require the kernel package - just the kernel
sources. It's really a user-space tool just compiled from some portable
code within the kernel, nothing more.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
- longterm: 3.4.83 -> 3.4.85
- longterm: 3.10.33 -> 3.10.35
- longterm: 3.12.14 -> 3.12.15
- stable: 3.13.7 -> 3.13.8
NOTE: This will break the testing grsec kernel at the moment (there's
not a 3.13.8 patch yet), but it's destined to be upgraded to 3.14 soon
anyway.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
- longterm: 3.4.83 -> 3.4.85
- longterm: 3.10.33 -> 3.10.35
- longterm: 3.12.14 -> 3.12.15
- stable: 3.13.7 -> 3.13.8
NOTE: This will break the testing grsec kernel at the moment (there's
not a 3.18.8 patch yet), but it's destined to be upgraded to 3.14 soon
anyway.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Lockdep is the kernel's locking validation/debugging tool and has seen
heavy pro-active usage and development. In Linux 3.14, it's now
available directly to userspace for the same purpose. It comes with a
convenient utility to LD_PRELOAD a shared library for validation, or a
user-space API to link to directly.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Based on access analysis with strace, I determined an essentially
minimal required set of files from the kernel source that was needed to
build all current kernel packages on 3.10, which ultimately resulted in
keeping 30M of source. Generalizing from that minimal set, which
required ad-hoc specifications of which headers outside of include/ and
arch/*/include and which files in the scripts/ directory should be kept,
to a policy of keeping all non-arch-specific headers that aren't part of
the drivers/ directory and the entire scripts/ directory added an
additional 17M, but there was nothing in the analysis that indicated
that that ad-hoc specification was at all complete so I think the extra
hit is worth the likely greater compatibility.
For reference, we now keep:
* All headers that are NOT in arch/${notTargetArch}/include or drivers/
* The scripts/ directory
* Makefile
* arch/${targetArch}/Makefile
IMO the most likely cause of future problems are the headers in
drivers/, but hopefully they won't actually be needed as they add 50M
Ideally kernel packages would only use include and
arch/${targetArch}/include, but alas this is observably not the case.
master:
* $out
* size: 234M
* references-closure: linux-headers, glibc, attr, acl, zlib, gcc,
coreutils, perl, bash
merge-kernel-builds:
* $out
* size: 152M
* references-closure: none
* $dev
* size: 57M
* references-closure: linux-headers, glibc, zlib, gcc
So even with the non-minimal set we still beat out master. Keeping the
drivers headers would make us only slightly bigger.
Signed-off-by: Shea Levy <shea@shealevy.com>
In most cases, this just meant changing kernelDev (now removed from
linuxPackagesFor) to kernel.dev. Some packages needed more work (though
whether that was because of my changes or because they were already
broken, I'm not sure). Specifics:
* psmouse-alps builds on 3.4 but not 3.10, as noted in the comments that
were already there
* blcr builds on 3.4 but not 3.10, as noted in comments that were
already there
* open-iscsi, ati-drivers, wis-go7007, and openafsClient don't build on
3.4 or 3.10 on this branch or on master, so they're marked broken
* A version-specific kernelHeaders package was added
The following packages were removed:
* atheros/madwifi is superceded by official ath*k modules
* aufs is no longer used by any of our kernels
* broadcom-sta v6 (which was already packaged) replaces broadcom-sta
* exmap has not been updated since 2011 and doesn't build
* iscis-target has not been updated since 2010 and doesn't build
* iwlwifi is part of mainline now and doesn't build
* nivida-x11-legacy-96 hasn't been updated since 2008 and doesn't build
Everything not specifically mentioned above builds successfully on 3.10.
I haven't yet tested on 3.4, but will before opening a pull request.
Signed-off-by: Shea Levy <shea@shealevy.com>
This makes the disk usage footprint of building the kernel smaller in 3
ways:
1) There is no separate kernel source derivation
2) Rather than using the entire build tree, only the output of make
modules_prepare is kept in the $dev output (plus the module symbol
versioning file generated during the build)
3) Only the subset of the source tree known to be needed for external
builds is kept in $dev
Note that while 2) is supported by official kernel documentation, I
couldn't find any source describing what we need to keep for 3). I've
started with the bare minimum (the main Makefile is called by the
Makefile generated by make modules_prepare) and we can/should add more
as needed for kernelPackages.
Signed-off-by: Shea Levy <shea@shealevy.com>
This has three major benefits:
1. We no longer have two kernel build processes to maintain
2. The build process is (IMO) cleaner and cleaves more closely to
upstream. In partuclar, we use make install to install the kernel and
development source/build trees, eliminating the guesswork about which
files to copy.
3. The derivation has multiple outputs: the kernel and modules are in
the default `out' output, while the build and source trees are in a
`dev' output. This makes it possible for the full source and build tree
to be kept (which is expected by out-of-tree modules) without bloating
the closure of the system derivation.
In addition, if a solution for how to handle queries in the presence of
imports from derivations ever makes it into nix, a framework for
querying the full configuration of the kernel in nix expressions is
already in place.
Signed-off-by: Shea Levy <shea@shealevy.com>