The first FIXME is removed because it doesn't make sense to use
/proc/1/exe since that points to a directory that doesn't have all tools
the activation script needs (like systemd-escape).
The second one is removed because there is already no error handling
(compare with the restart logic where the return code is checked).
This commit changes a lot more that you'd expect but it also adds a lot
of new testing code so nothing breaks in the future. The main change is
that sockets are now restarted when they change. The main reason for
the large amount of changes is the ability of activation scripts to
restart/reload units. This also works for socket-activated units now,
and honors reloadIfChanged and restartIfChanged. The two changes don't
really work without each other so they are done in the one large commit.
The test should show what works now and ensure it will continue to do so
in the future.
When cross-compiling, we can't run the runtime shell to check syntax
if it's e.g. for a different architecture. We have two options here.
We can disable syntax checking when cross compiling, but that risks
letting errors through. Or, we can do what I've done here, and change
the syntax check to use stdenv's shell instead of the runtime shell.
This requires the stdenv shell and runtime shell to be broadly
compatible, but I think that's so ingrained in Nixpkgs anyway that
it's fine. And this way we avoid conditionals that check for cross.
The primary use case is tools like sops-nix and agenix to restart units
when secrets change. There's probably other reasons to restart units as
well and a nice thing to have in general.
Since 03eaa48 added perl.withPackages, there is a canonical way to
create a perl interpreter from a list of libraries, for use in script
shebangs or generic build inputs. This method is declarative (what we
are doing is clear), produces short shebangs[1] and needs not to wrap
existing scripts.
Unfortunately there are a few exceptions that I've found:
1. Scripts that are calling perl with the -T switch. This makes perl
ignore PERL5LIB, which is what perl.withPackages is using to inform
the interpreter of the library paths.
2. Perl packages that depends on libraries in their own path. This
is not possible because perl.withPackages works at build time. The
workaround is to add `-I $out/${perl.libPrefix}` to the shebang.
In all other cases I propose to switch to perl.withPackages.
[1]: https://lwn.net/Articles/779997/
The `platform` field is pointless nesting: it's just stuff that happens
to be defined together, and that should be an implementation detail.
This instead makes `linux-kernel` and `gcc` top level fields in platform
configs. They join `rustc` there [all are optional], which was put there
and not in `platform` in anticipation of a change like this.
`linux-kernel.arch` in particular also becomes `linuxArch`, to match the
other `*Arch`es.
The next step after is this to combine the *specific* machines from
`lib.systems.platforms` with `lib.systems.examples`, keeping just the
"multiplatform" ones for defaulting.
The toplevel derivations of systems that have `networking.hostName`
set to `""` (because they want their hostname to be set by DHCP) used
to be all named
`nixos-system-unnamed-${config.system.nixos.label}`.
This makes them hard to distinguish.
A similar problem existed in NixOS tests where `vmName` is used in the
`testScript` to refer to the VM. It defaulted to the
`networking.hostName` which when set to `""` won't allow you to refer
to the machine from the `testScript`.
This commit makes the `system.name` configurable. It still defaults to:
```
if config.networking.hostName == ""
then "unnamed"
else config.networking.hostName;
```
but in case `networking.hostName` needs to be to `""` the
`system.name` can be set to a distinguishable name.
`$toplevel/system` of a system closure with `x86_64` kernel and `i686` userland should contain "x86_64-linux".
If `$toplevel/system` contains "i686-linux", the closure will be run using `qemu-system-i386`, which is able to run `x86_64` kernel on most Intel CPU, but fails on AMD.
So this fix is for a rare case of `x86_64` kernel + `i686` userland + AMD CPU
This is to facilitate units that should _only_ be manually started and
not activated when a configuration is switched to.
More specifically this is to be used by the new Nixops deploy-*
targets created in https://github.com/NixOS/nixops/pull/1245 that are
triggered by Nixops before/after switch-to-configuration is called.
This avoids a possible surprise if the user is using `nixpkgs.system`
and `nesting.children`. `nesting.children` is expected to ignore all
parent configuration so we shouldn't propagate the user-facing option
`nixpkgs.system`. To avoid doing so, we introduce a new internal
option for holding the value passed to eval-config.nix, and use that
when recursing for nesting.
The current behavior lets `system` default to
`builtins.currentSystem`. The system value specified to
`eval-config.nix` has very low precedence, so this should compose
properly.
Fixes#80806
Previously, socket units wouldn't be restarted if they were
changed. To restart the socket, the service the socket is attached
to needs to be stopped first before the socket can be restarted.
The new systemd in 19.09 gives an "Access Denied" error when doing
"systemctl daemon-reexec" on an 19.03 system. The fix is to use the
previous systemctl to signal the daemon to re-exec itself. This
ensures that users don't have to reboot when upgrading from NixOS
19.03 to 19.09.