sage: replace ipywidgets workaround by update patches
This commit is contained in:
parent
e9944eaecc
commit
058dc0f6df
2 changed files with 14 additions and 16 deletions
|
@ -1,13 +0,0 @@
|
|||
diff --git a/src/sage/interacts/library.py b/src/sage/interacts/library.py
|
||||
index 06d680109a..139b00bfd1 100644
|
||||
--- a/src/sage/interacts/library.py
|
||||
+++ b/src/sage/interacts/library.py
|
||||
@@ -1434,6 +1434,8 @@ def riemann_sum(
|
||||
creates the mathlet::
|
||||
|
||||
sage: interacts.calculus.riemann_sum()
|
||||
+ ...
|
||||
+ DeprecationWarning: on_submit is deprecated. Instead, set the .continuous_update attribute to False and observe the value changing with: mywidget.observe(callback, 'value').
|
||||
Manual interactive function <function riemann_sum at ...> with 9 widgets
|
||||
title: HTMLText(value='<h2>Riemann integral with random sampling</h2>')
|
||||
f: EvalText(value='x^2+1', description='$f(x)=$', layout=Layout(max_width='41em'))
|
|
@ -141,12 +141,23 @@ stdenv.mkDerivation rec {
|
|||
sha256 = "sha256-YdPnMsjXBm9ZRm6a8hH8rSynkrABjLoIzqwp3F/rKAw=";
|
||||
})
|
||||
|
||||
# https://github.com/sagemath/sage/pull/35336, merged in 10.0.beta8
|
||||
(fetchpatch {
|
||||
name = "ipywidgets-8.0.5-upgrade.patch";
|
||||
url = "https://github.com/sagemath/sage/commit/7ab3e3aa81d47a35d09161b965bba8ab16fd5c9e.diff";
|
||||
sha256 = "sha256-WjdsPTui6uv92RerlV0mqltmLaxADvz+3aqSvxBFmfU=";
|
||||
})
|
||||
|
||||
# https://github.com/sagemath/sage/pull/35499
|
||||
(fetchpatch {
|
||||
name = "ipywidgets-8.0.5-upgrade-part-deux.patch";
|
||||
url = "https://github.com/sagemath/sage/pull/35499.diff";
|
||||
sha256 = "sha256-uNCjLs9qrARTQNsq1+kTdvuV2A1M4xx5b1gWh5c55X0=";
|
||||
})
|
||||
|
||||
# rebased from https://github.com/sagemath/sage/pull/34994, merged in sage 10.0.beta2
|
||||
./patches/numpy-1.24-upgrade.patch
|
||||
|
||||
# temporarily paper over https://github.com/jupyter-widgets/ipywidgets/issues/3669
|
||||
./patches/ipywidgets-on_submit-deprecationwarning.patch
|
||||
|
||||
# Sage uses mixed integer programs (MIPs) to find edge disjoint
|
||||
# spanning trees. For some reason, aarch64 glpk takes much longer
|
||||
# than x86_64 glpk to solve such MIPs. Since the MIP formulation
|
||||
|
|
Loading…
Reference in a new issue