nixpkgs-suyu/pkgs/lib/attrsets.nix

290 lines
9.1 KiB
Nix
Raw Normal View History

# Operations on attribute sets.
with {
inherit (builtins) head tail isString;
inherit (import ./trivial.nix) or;
inherit (import ./default.nix) fold;
inherit (import ./strings.nix) concatStringsSep;
inherit (import ./lists.nix) concatMap;
inherit (import ./misc.nix) eqStrict;
};
rec {
inherit (builtins) attrNames listToAttrs hasAttr isAttrs;
/* Return an attribute from nested attribute sets. For instance
["x" "y"] applied to some set e returns e.x.y, if it exists. The
default value is returned otherwise. */
attrByPath = attrPath: default: e:
let attr = head attrPath;
in
if attrPath == [] then e
else if builtins ? hasAttr && hasAttr attr e
then attrByPath (tail attrPath) default (getAttr attr e)
else default;
/* Return nested attribute set in which an attribute is set. For instance
["x" "y"] applied with some value v returns `x.y = v;' */
setAttrByPath = attrPath: value:
if attrPath == [] then value
else listToAttrs [(
nameValuePair (head attrPath) (setAttrByPath (tail attrPath) value)
)];
/* Backwards compatibility hack: lib.attrByPath used to be called
lib.getAttr, which was confusing given that there was also a
builtins.getAttr. Eventually we'll drop this hack and
lib.getAttr will just be an alias for builtins.getAttr. */
getAttr = a: b: if isString a
then builtins.getAttr a b
else c: builtins.trace "Deprecated use of lib.getAttr!" (attrByPath a b c);
getAttrFromPath = attrPath: set:
let errorMsg = "cannot find attribute `" + concatStringsSep "." attrPath + "'";
in attrByPath attrPath (abort errorMsg) set;
/* Return the specified attributes from a set.
Example:
attrVals ["a" "b" "c"] as
=> [as.a as.b as.c]
*/
attrVals = nameList: set:
map (x: getAttr x set) nameList;
/* Return the values of all attributes in the given set, sorted by
attribute name.
Example:
attrValues {c = 3; a = 1; b = 2;}
=> [1 2 3]
*/
attrValues = attrs: attrVals (attrNames attrs) attrs;
/* Collect each attribute named `attr' from a list of attribute
sets. Sets that don't contain the named attribute are ignored.
Example:
catAttrs "a" [{a = 1;} {b = 0;} {a = 2;}]
=> [1 2]
*/
catAttrs = attr: l: fold (s: l: if hasAttr attr s then [(getAttr attr s)] ++ l else l) [] l;
/* Filter an attribute set by removing all attributes for which the
given predicate return false.
Example:
filterAttrs (n: v: n == "foo") { foo = 1; bar = 2; }
=> { foo = 1; }
*/
filterAttrs = pred: set:
listToAttrs (fold (n: ys: let v = getAttr n set; in if pred n v then [(nameValuePair n v)] ++ ys else ys) [] (attrNames set));
/* Recursively collect sets that verify a given predicate named `pred'
from the set `attrs'. The recursion is stopped when the predicate is
verified.
Type:
collect ::
(AttrSet -> Bool) -> AttrSet -> AttrSet
Example:
collect builtins.isList { a = { b = ["b"]; }; c = [1]; }
=> [["b"] [1]]
collect (x: x ? outPath)
{ a = { outPath = "a/"; }; b = { outPath = "b/"; }; }
=> [{ outPath = "a/"; } { outPath = "b/"; }]
*/
collect = pred: attrs:
if pred attrs then
[ attrs ]
else if builtins.isAttrs attrs then
concatMap (collect pred) (attrValues attrs)
else
[];
/* Utility function that creates a {name, value} pair as expected by
builtins.listToAttrs. */
nameValuePair = name: value: { inherit name value; };
/* Apply a function to each element in an attribute set. The
function takes two arguments --- the attribute name and its value
--- and returns the new value for the attribute. The result is a
new attribute set.
Example:
mapAttrs (name: value: name + "-" + value)
{x = "foo"; y = "bar";}
=> {x = "x-foo"; y = "y-bar";}
*/
mapAttrs = f: set:
listToAttrs (map (attr: nameValuePair attr (f attr (getAttr attr set))) (attrNames set));
/* Like `mapAttrs', except that it recursively applies itself to
attribute sets. Also, the first argument of the argument
function is a *list* of the names of the containing attributes.
Type:
mapAttrsRecursive ::
([String] -> a -> b) -> AttrSet -> AttrSet
Example:
mapAttrsRecursive (path: value: concatStringsSep "-" (path ++ [value]))
{ n = { a = "A"; m = { b = "B"; c = "C"; }; }; d = "D"; }
=> { n = { a = "n-a-A"; m = { b = "n-m-b-B"; c = "n-m-c-C"; }; }; d = "d-D"; }
*/
mapAttrsRecursive = mapAttrsRecursiveCond (as: true);
/* Like `mapAttrsRecursive', but it takes an additional predicate
function that tells it whether to recursive into an attribute
set. If it returns false, `mapAttrsRecursiveCond' does not
recurse, but does apply the map function. It is returns true, it
does recurse, and does not apply the map function.
Type:
mapAttrsRecursiveCond ::
(AttrSet -> Bool) -> ([String] -> a -> b) -> AttrSet -> AttrSet
Example:
# To prevent recursing into derivations (which are attribute
# sets with the attribute "type" equal to "derivation"):
mapAttrsRecursiveCond
(as: !(as ? "type" && as.type == "derivation"))
(x: ... do something ...)
attrs
*/
mapAttrsRecursiveCond = cond: f: set:
let
recurse = path: set:
let
g =
name: value:
if isAttrs value && cond value
then recurse (path ++ [name]) value
else f (path ++ [name]) value;
in mapAttrs g set;
in recurse [] set;
/* Check whether the argument is a derivation. */
isDerivation = x: isAttrs x && x ? type && x.type == "derivation";
/* If the Boolean `cond' is true, return the attribute set `as',
otherwise an empty attribute set. */
optionalAttrs = cond: as: if cond then as else {};
/* Merge sets of attributes and use the function f to merge attributes
values. */
zipAttrsWithNames = names: f: sets:
listToAttrs (map (name: {
inherit name;
value = f name (catAttrs name sets);
}) names);
# implentation note: Common names appear multiple times in the list of
# names, hopefully this does not affect the system because the maximal
# laziness avoid computing twice the same expression and listToAttrs does
# not care about duplicated attribute names.
zipAttrsWith = f: sets: zipWithNames (concatMap attrNames sets) f sets;
zipAttrs = zipAttrsWith (name: values: values);
/* backward compatibility */
zipWithNames = zipAttrsWithNames;
zip = zipAttrsWith;
/* Does the same as the update operator '//' except that attributes are
merged until the given pedicate is verified. The predicate should
accept 3 arguments which are the path to reach the attribute, a part of
the first attribute set and a part of the second attribute set. When
the predicate is verified, the value of the first attribute set is
replaced by the value of the second attribute set.
Example:
recursiveUpdateUntil (path: l: r: path == ["foo"]) {
# first attribute set
foo.bar = 1;
foo.baz = 2;
bar = 3;
} {
#second attribute set
foo.bar = 1;
foo.quz = 2;
baz = 4;
}
returns: {
foo.bar = 1; # 'foo.*' from the second set
foo.quz = 2; #
bar = 3; # 'bar' from the first set
baz = 4; # 'baz' from the second set
}
*/
recursiveUpdateUntil = pred: lhs: rhs:
let f = attrPath:
zipAttrsWith (n: values:
if tail values == []
|| pred attrPath (head (tail values)) (head values) then
head values
else
f (attrPath ++ [n]) values
);
in f [] [rhs lhs];
/* Does the same as the update operator '//' and keep siblings attribute.
This recusion stop when one of the attribute value is not an attribute
set, in which case the right hand side value takes precedence over the
left hand side value.
Example:
recursiveUpdate {
boot.loader.grub.enable = true;
boot.loader.grub.device = "/dev/hda";
} {
boot.loader.grub.device = "";
}
returns: {
boot.loader.grub.enable = true;
boot.loader.grub.device = "";
}
*/
recursiveUpdate = lhs: rhs:
recursiveUpdateUntil (path: lhs: rhs:
!(isAttrs lhs && isAttrs rhs)
) lhs rhs;
matchAttrs = pattern: attrs:
fold or false (attrValues (zipAttrsWithNames (attrNames pattern) (n: values:
let pat = head values; val = head (tail values); in
if tail values == [] then false
else if isAttrs pat then isAttrs val && matchAttrs head values
else eqStrict pat val
) [pattern attrs]));
# override only the attributes that are already present in the old set
# useful for deep-overriding
overrideExisting = old: new:
old // listToAttrs (map (attr: nameValuePair attr (attrByPath [attr] (getAttr attr old) new)) (attrNames old));
}