// SPDX-FileCopyrightText: Copyright 2021 suyu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #pragma once #include #include "common/alignment.h" #include "common/common_types.h" namespace Common { // Implementation of TinyMT (mersenne twister RNG). // Like Nintendo, we will use the sample parameters. class TinyMT { public: static constexpr std::size_t NumStateWords = 4; struct State { std::array data{}; }; private: static constexpr u32 ParamMat1 = 0x8F7011EE; static constexpr u32 ParamMat2 = 0xFC78FF1F; static constexpr u32 ParamTmat = 0x3793FDFF; static constexpr u32 ParamMult = 0x6C078965; static constexpr u32 ParamPlus = 0x0019660D; static constexpr u32 ParamXor = 0x5D588B65; static constexpr u32 TopBitmask = 0x7FFFFFFF; static constexpr int MinimumInitIterations = 8; static constexpr int NumDiscardedInitOutputs = 8; static constexpr u32 XorByShifted27(u32 value) { return value ^ (value >> 27); } static constexpr u32 XorByShifted30(u32 value) { return value ^ (value >> 30); } private: State state{}; private: // Internal API. void FinalizeInitialization() { const u32 state0 = this->state.data[0] & TopBitmask; const u32 state1 = this->state.data[1]; const u32 state2 = this->state.data[2]; const u32 state3 = this->state.data[3]; if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) { this->state.data[0] = 'T'; this->state.data[1] = 'I'; this->state.data[2] = 'N'; this->state.data[3] = 'Y'; } for (int i = 0; i < NumDiscardedInitOutputs; i++) { this->GenerateRandomU32(); } } u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); } static void GenerateInitialValuePlus(TinyMT::State* state, int index, u32 value) { u32& state0 = state->data[(index + 0) % NumStateWords]; u32& state1 = state->data[(index + 1) % NumStateWords]; u32& state2 = state->data[(index + 2) % NumStateWords]; u32& state3 = state->data[(index + 3) % NumStateWords]; const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus; const u32 y = x + index + value; state0 = y; state1 += x; state2 += y; } static void GenerateInitialValueXor(TinyMT::State* state, int index) { u32& state0 = state->data[(index + 0) % NumStateWords]; u32& state1 = state->data[(index + 1) % NumStateWords]; u32& state2 = state->data[(index + 2) % NumStateWords]; u32& state3 = state->data[(index + 3) % NumStateWords]; const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor; const u32 y = x - index; state0 = y; state1 ^= x; state2 ^= y; } public: constexpr TinyMT() = default; // Public API. // Initialization. void Initialize(u32 seed) { this->state.data[0] = seed; this->state.data[1] = ParamMat1; this->state.data[2] = ParamMat2; this->state.data[3] = ParamTmat; for (int i = 1; i < MinimumInitIterations; i++) { const u32 mixed = XorByShifted30(this->state.data[(i - 1) % NumStateWords]); this->state.data[i % NumStateWords] ^= mixed * ParamMult + i; } this->FinalizeInitialization(); } void Initialize(const u32* seed, int seed_count) { this->state.data[0] = 0; this->state.data[1] = ParamMat1; this->state.data[2] = ParamMat2; this->state.data[3] = ParamTmat; { const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1; GenerateInitialValuePlus(&this->state, 0, seed_count); for (int i = 0; i < num_init_iterations; i++) { GenerateInitialValuePlus(&this->state, (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0); } for (int i = 0; i < static_cast(NumStateWords); i++) { GenerateInitialValueXor(&this->state, (i + 1 + num_init_iterations) % NumStateWords); } } this->FinalizeInitialization(); } // State management. void GetState(TinyMT::State& out) const { out.data = this->state.data; } void SetState(const TinyMT::State& state_) { this->state.data = state_.data; } // Random generation. void GenerateRandomBytes(void* dst, std::size_t size) { const uintptr_t start = reinterpret_cast(dst); const uintptr_t end = start + size; const uintptr_t aligned_start = Common::AlignUp(start, 4); const uintptr_t aligned_end = Common::AlignDown(end, 4); // Make sure we're aligned. if (start < aligned_start) { const u32 rnd = this->GenerateRandomU32(); std::memcpy(dst, &rnd, aligned_start - start); } // Write as many aligned u32s as we can. { u32* cur_dst = reinterpret_cast(aligned_start); u32* const end_dst = reinterpret_cast(aligned_end); while (cur_dst < end_dst) { *(cur_dst++) = this->GenerateRandomU32(); } } // Handle any leftover unaligned data. if (aligned_end < end) { const u32 rnd = this->GenerateRandomU32(); std::memcpy(reinterpret_cast(aligned_end), &rnd, end - aligned_end); } } u32 GenerateRandomU32() { // Advance state. const u32 x0 = (this->state.data[0] & TopBitmask) ^ this->state.data[1] ^ this->state.data[2]; const u32 y0 = this->state.data[3]; const u32 x1 = x0 ^ (x0 << 1); const u32 y1 = y0 ^ (y0 >> 1) ^ x1; const u32 state0 = this->state.data[1]; u32 state1 = this->state.data[2]; u32 state2 = x1 ^ (y1 << 10); const u32 state3 = y1; if ((y1 & 1) != 0) { state1 ^= ParamMat1; state2 ^= ParamMat2; } this->state.data[0] = state0; this->state.data[1] = state1; this->state.data[2] = state2; this->state.data[3] = state3; // Temper. const u32 t1 = state0 + (state2 >> 8); u32 t0 = state3 ^ t1; if ((t1 & 1) != 0) { t0 ^= ParamTmat; } return t0; } u64 GenerateRandomU64() { const u32 lo = this->GenerateRandomU32(); const u32 hi = this->GenerateRandomU32(); return (u64{hi} << 32) | u64{lo}; } float GenerateRandomF32() { // Floats have 24 bits of mantissa. constexpr u32 MantissaBits = 24; return static_cast(GenerateRandomU24()) * (1.0f / (1U << MantissaBits)); } double GenerateRandomF64() { // Doubles have 53 bits of mantissa. // The smart way to generate 53 bits of random would be to use 32 bits // from the first rnd32() call, and then 21 from the second. // Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32() // call, and (32 - 6) bits from the second. We'll do what they do, but // There's not a clear reason why. constexpr u32 MantissaBits = 53; constexpr u32 Shift1st = (64 - MantissaBits) / 2; constexpr u32 Shift2nd = (64 - MantissaBits) - Shift1st; const u32 first = (this->GenerateRandomU32() >> Shift1st); const u32 second = (this->GenerateRandomU32() >> Shift2nd); return (1.0 * first * (u64{1} << (32 - Shift2nd)) + second) * (1.0 / (u64{1} << MantissaBits)); } }; } // namespace Common